Differences of composition operators on weighted Bergman spaces
We obtain a new boundedness criterion for the difference of two composition operators from a weighted Bergman space A α p into a Lebesgue space L q ( μ ) , where 0 < q < p and α > - 1 . As a consequence, we provide a direct proof that such a bounded difference operator is necessarily compac...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2023-11, Vol.72 (2), p.815-833 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a new boundedness criterion for the difference of two composition operators from a weighted Bergman space
A
α
p
into a Lebesgue space
L
q
(
μ
)
, where
0
<
q
<
p
and
α
>
-
1
. As a consequence, we provide a direct proof that such a bounded difference operator is necessarily compact. We also characterize compact differences of composition operators from
A
α
p
into
A
β
q
explicitly for
0
<
p
≤
q
and
α
,
β
>
-
1
. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-021-00592-2 |