Differences of composition operators on weighted Bergman spaces

We obtain a new boundedness criterion for the difference of two composition operators from a weighted Bergman space A α p into a Lebesgue space L q ( μ ) , where 0 < q < p and α > - 1 . As a consequence, we provide a direct proof that such a bounded difference operator is necessarily compac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2023-11, Vol.72 (2), p.815-833
Hauptverfasser: Lo, Ching-on, Loh, Anthony Wai-keung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a new boundedness criterion for the difference of two composition operators from a weighted Bergman space A α p into a Lebesgue space L q ( μ ) , where 0 < q < p and α > - 1 . As a consequence, we provide a direct proof that such a bounded difference operator is necessarily compact. We also characterize compact differences of composition operators from A α p into A β q explicitly for 0 < p ≤ q and α , β > - 1 .
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-021-00592-2