Physical Effects from the Kyiv Meteoroid: Part 1
This study is aimed at comprehensively analyzing and estimating the effects in gas dynamics, as well as mechanical and optical effects, from the Kyiv meteoroid that entered the terrestrial atmosphere and exploded over Bila Tserkva raion, Kyiv oblast (Ukraine). According to the International Meteor O...
Gespeichert in:
Veröffentlicht in: | Kinematics and physics of celestial bodies 2023-10, Vol.39 (5), p.261-279 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study is aimed at comprehensively analyzing and estimating the effects in gas dynamics, as well as mechanical and optical effects, from the Kyiv meteoroid that entered the terrestrial atmosphere and exploded over Bila Tserkva raion, Kyiv oblast (Ukraine). According to the International Meteor Organization (IMO), the apparent magnitude of the meteoroid was –18. According to our estimates, the luminous power was 215 GW with an effective duration of 2.4 ± 0.2 s, the total luminous energy was 25.2 ± 2.5 GJ, and the initial kinetic energy was 0.09 ± 0.01 kt of TNT or 375 ± 35 GJ. The initial mass of the cosmic body was estimated to be 0.89 ± 0.09 t, the volume was 0.250 ± 0.025 m
3
, and the size was 79 ± 3 cm. The initial velocity of the meteoroid reached 29 km/s. The inclination angle, i.e., the angle that the trajectory makes with the horizontal plane, was 32°. The explosion altitude equal to 38 km and the inclination angle equal to 32° give an estimate of 3.5 t/m
3
for the material density, which is close to the rock density. The energy of the processes, the gas dynamics effects, and the mechanical and optical effects from the celestial body have been analyzed. The main release of energy associated with the deceleration of the fragments of the celestial body, which was defragmented under a dynamical pressure of approximately 2.5 MPa, took place in the region with a length of 2 km at an altitude of approximately 38 km. A quasi-continuous defragmentation is suggested to produce a mass distribution that follows a power law. The main parameters of the ballistic and explosive shock waves have been estimated. For the Mach number of 97, the radius of the ballistic shock wave is estimated to be approximately 77 m, and the fundamental period to be 0.7 s, which showed a dispersive increase from 3.7 to 11.5 s with the propagation path length increasing from 50 to 5000 km. The radii of cylindrical and spherical wavefront shock waves were approximately 0.28 and 0.34 km, and their fundamental periods were approximately 2.6 and 3.2 s, respectively. These periods increased from 9.5 to 30.0 s and from 11.1 to 35.1 s with an increase in the propagation path length from 50 to 5000 km. In the vicinity of the meteoroid’s explosion height, the relative excess pressure was a maximum. It decreased with a decrease in the altitude and increased with an increase in the altitude up to approximately 120–150 km, at which it attained values of approximately 6–7% and then further dec |
---|---|
ISSN: | 0884-5913 1934-8401 |
DOI: | 10.3103/S0884591323050045 |