The odd octopus: identification and burrowing behaviour of a deep-water octopus, Muusoctopus leioderma, found in a shallow-water bay

Cephalopod populations have expanded over recent decades, both numerically and geographically. These expansions are particularly noteworthy because cephalopods are a taxon of quickly reproducing, high-metabolic rate predators that can have disproportionate impacts on naïve ecosystems. We report a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Marine Biological Association of the United Kingdom 2023-10, Vol.103, Article e79
Hauptverfasser: Kore, Lydia G., Johnson, Bobbi M., Winters, Misa, Onthank, Kirt L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cephalopod populations have expanded over recent decades, both numerically and geographically. These expansions are particularly noteworthy because cephalopods are a taxon of quickly reproducing, high-metabolic rate predators that can have disproportionate impacts on naïve ecosystems. We report a new occurrence of an octopus species in 11.6 m of water in Burrows Bay, Washington, USA (coastal northeast Pacific Ocean). These newly identified individuals have several characteristics that clearly differentiate them from either of the two known octopus species that occur in shallow water within the area: Octopus rubescens and Enteroctopus dofleini. Instead, specimens superficially resemble Muusoctopus leioderma, a species which is found in the geographic area, but has never been reported at depths less than 70 m. Octopuses were collected for morphological and genetic comparison to known octopus species, focusing on other nominal Muusoctopus species. Genetic comparisons were conducted using three mitochondrial loci (12S ribosomal RNA, cytochrome oxidase subunit III, and cytochrome b) sequenced for the octopus along with two M. leioderma museum specimens, including the species' neotype. Observation of octopus behaviour revealed a unique burrowing behaviour. Morphology of the octopus found in Burrows Bay largely coincides with M. leioderma, with a few notable differences. Phylogenetic analysis revealed that Burrows Bay octopus forms a monophyletic clade with the M. leioderma neotype, but also suggested that M. leioderma is more closely related to Octopus californicus than to the other members of the genus Muusoctopus. These octopuses are thus attributed to M. leioderma but the generic placement of the species should be reviewed.
ISSN:0025-3154
1469-7769
DOI:10.1017/S0025315423000644