An upper bound for the rational topological complexity of a family of elliptic spaces

In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Hamoun, Said, Youssef Rami, Vandembroucq, Lucile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hamoun, Said
Youssef Rami
Vandembroucq, Lucile
description In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a structure theorem for this type of models, which is actually our main result.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2871971727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871971727</sourcerecordid><originalsourceid>FETCH-proquest_journals_28719717273</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC60CbW1KWI4gF0XWKaaEraF_MBvb1FPICrmcUwM5JRxqqi2VC6IHkIfVmWdMtpXbOMXPcjJOeUhxumsQONHuJDgRfR4CgsRHRo8W7k5BIHZ9XLxDegBgFaDMZ-XVlrXDQSghNShRWZa2GDyn9ckvXpeDmcC-fxmVSIbY_JT_vQ0oZXO15xytl_1QfOd0EC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871971727</pqid></control><display><type>article</type><title>An upper bound for the rational topological complexity of a family of elliptic spaces</title><source>Free E- Journals</source><creator>Hamoun, Said ; Youssef Rami ; Vandembroucq, Lucile</creator><creatorcontrib>Hamoun, Said ; Youssef Rami ; Vandembroucq, Lucile</creatorcontrib><description>In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a structure theorem for this type of models, which is actually our main result.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Upper bounds</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hamoun, Said</creatorcontrib><creatorcontrib>Youssef Rami</creatorcontrib><creatorcontrib>Vandembroucq, Lucile</creatorcontrib><title>An upper bound for the rational topological complexity of a family of elliptic spaces</title><title>arXiv.org</title><description>In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a structure theorem for this type of models, which is actually our main result.</description><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC60CbW1KWI4gF0XWKaaEraF_MBvb1FPICrmcUwM5JRxqqi2VC6IHkIfVmWdMtpXbOMXPcjJOeUhxumsQONHuJDgRfR4CgsRHRo8W7k5BIHZ9XLxDegBgFaDMZ-XVlrXDQSghNShRWZa2GDyn9ckvXpeDmcC-fxmVSIbY_JT_vQ0oZXO15xytl_1QfOd0EC</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Hamoun, Said</creator><creator>Youssef Rami</creator><creator>Vandembroucq, Lucile</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230930</creationdate><title>An upper bound for the rational topological complexity of a family of elliptic spaces</title><author>Hamoun, Said ; Youssef Rami ; Vandembroucq, Lucile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28719717273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamoun, Said</creatorcontrib><creatorcontrib>Youssef Rami</creatorcontrib><creatorcontrib>Vandembroucq, Lucile</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamoun, Said</au><au>Youssef Rami</au><au>Vandembroucq, Lucile</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An upper bound for the rational topological complexity of a family of elliptic spaces</atitle><jtitle>arXiv.org</jtitle><date>2023-09-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a structure theorem for this type of models, which is actually our main result.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2871971727
source Free E- Journals
subjects Upper bounds
title An upper bound for the rational topological complexity of a family of elliptic spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20upper%20bound%20for%20the%20rational%20topological%20complexity%20of%20a%20family%20of%20elliptic%20spaces&rft.jtitle=arXiv.org&rft.au=Hamoun,%20Said&rft.date=2023-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2871971727%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871971727&rft_id=info:pmid/&rfr_iscdi=true