An upper bound for the rational topological complexity of a family of elliptic spaces
In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a str...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we show that, for any simply-connected elliptic space \(S\) admitting a pure minimal Sullivan model with a differential of constant length, we have \({\rm TC}_0(S)\leq 2{\rm cat}_0(S)+\chi_{\pi}(S)\) where \(\chi_{\pi}(S)\) is the homotopy characteristic. This is a consequence of a structure theorem for this type of models, which is actually our main result. |
---|---|
ISSN: | 2331-8422 |