Forecasting nonperforming loans using machine learning
Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial in...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2023-11, Vol.42 (7), p.1664-1689 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1689 |
---|---|
container_issue | 7 |
container_start_page | 1664 |
container_title | Journal of forecasting |
container_volume | 42 |
creator | Abdullah, Mohammad |
description | Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors. |
doi_str_mv | 10.1002/for.2977 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870819711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870819711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKvgT1jw4mVrJh87yVGKVaHgRaG3kKaJbmmTmrQH_71ZVvA0Hzy8wzyE3AKdAaXsIaQ8YxrxjEyAat0Ch9U5mVCG2Had5pfkqpQtpRQVsAnpFil7Z8uxj59NTPHgc03YD9Mu2ViaUxn6vXVfffTNztsc6-KaXAS7K_7mr07Jx-Lpff7SLt-eX-ePy9ZxIY8tp4I5pgR3EoRGrSSiotJ3QQYUwHGjoQtaaiakX3ccLBMefZBrXAtON3xK7sbcQ07fJ1-OZptOOdaThimkCjQCVOp-pFxOpWQfzCH3e5t_DFAzWDH1JzNYqWgzot6l2Jd_UCFgtdKt-C96yF2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870819711</pqid></control><display><type>article</type><title>Forecasting nonperforming loans using machine learning</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Abdullah, Mohammad</creator><creatorcontrib>Abdullah, Mohammad</creatorcontrib><description>Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2977</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Diversification ; Financial institutions ; Forecasting ; Loans ; Nonlinear analysis</subject><ispartof>Journal of forecasting, 2023-11, Vol.42 (7), p.1664-1689</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</citedby><cites>FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abdullah, Mohammad</creatorcontrib><title>Forecasting nonperforming loans using machine learning</title><title>Journal of forecasting</title><description>Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.</description><subject>Diversification</subject><subject>Financial institutions</subject><subject>Forecasting</subject><subject>Loans</subject><subject>Nonlinear analysis</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKvgT1jw4mVrJh87yVGKVaHgRaG3kKaJbmmTmrQH_71ZVvA0Hzy8wzyE3AKdAaXsIaQ8YxrxjEyAat0Ch9U5mVCG2Had5pfkqpQtpRQVsAnpFil7Z8uxj59NTPHgc03YD9Mu2ViaUxn6vXVfffTNztsc6-KaXAS7K_7mr07Jx-Lpff7SLt-eX-ePy9ZxIY8tp4I5pgR3EoRGrSSiotJ3QQYUwHGjoQtaaiakX3ccLBMefZBrXAtON3xK7sbcQ07fJ1-OZptOOdaThimkCjQCVOp-pFxOpWQfzCH3e5t_DFAzWDH1JzNYqWgzot6l2Jd_UCFgtdKt-C96yF2k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Abdullah, Mohammad</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20231101</creationdate><title>Forecasting nonperforming loans using machine learning</title><author>Abdullah, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diversification</topic><topic>Financial institutions</topic><topic>Forecasting</topic><topic>Loans</topic><topic>Nonlinear analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Mohammad</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting nonperforming loans using machine learning</atitle><jtitle>Journal of forecasting</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><spage>1664</spage><epage>1689</epage><pages>1664-1689</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2977</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2023-11, Vol.42 (7), p.1664-1689 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_journals_2870819711 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Diversification Financial institutions Forecasting Loans Nonlinear analysis |
title | Forecasting nonperforming loans using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20nonperforming%20loans%20using%20machine%20learning&rft.jtitle=Journal%20of%20forecasting&rft.au=Abdullah,%20Mohammad&rft.date=2023-11-01&rft.volume=42&rft.issue=7&rft.spage=1664&rft.epage=1689&rft.pages=1664-1689&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2977&rft_dat=%3Cproquest_cross%3E2870819711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870819711&rft_id=info:pmid/&rfr_iscdi=true |