Forecasting nonperforming loans using machine learning

Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2023-11, Vol.42 (7), p.1664-1689
1. Verfasser: Abdullah, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1689
container_issue 7
container_start_page 1664
container_title Journal of forecasting
container_volume 42
creator Abdullah, Mohammad
description Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.
doi_str_mv 10.1002/for.2977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870819711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870819711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKvgT1jw4mVrJh87yVGKVaHgRaG3kKaJbmmTmrQH_71ZVvA0Hzy8wzyE3AKdAaXsIaQ8YxrxjEyAat0Ch9U5mVCG2Had5pfkqpQtpRQVsAnpFil7Z8uxj59NTPHgc03YD9Mu2ViaUxn6vXVfffTNztsc6-KaXAS7K_7mr07Jx-Lpff7SLt-eX-ePy9ZxIY8tp4I5pgR3EoRGrSSiotJ3QQYUwHGjoQtaaiakX3ccLBMefZBrXAtON3xK7sbcQ07fJ1-OZptOOdaThimkCjQCVOp-pFxOpWQfzCH3e5t_DFAzWDH1JzNYqWgzot6l2Jd_UCFgtdKt-C96yF2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870819711</pqid></control><display><type>article</type><title>Forecasting nonperforming loans using machine learning</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Abdullah, Mohammad</creator><creatorcontrib>Abdullah, Mohammad</creatorcontrib><description>Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2977</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Diversification ; Financial institutions ; Forecasting ; Loans ; Nonlinear analysis</subject><ispartof>Journal of forecasting, 2023-11, Vol.42 (7), p.1664-1689</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</citedby><cites>FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abdullah, Mohammad</creatorcontrib><title>Forecasting nonperforming loans using machine learning</title><title>Journal of forecasting</title><description>Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.</description><subject>Diversification</subject><subject>Financial institutions</subject><subject>Forecasting</subject><subject>Loans</subject><subject>Nonlinear analysis</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKvgT1jw4mVrJh87yVGKVaHgRaG3kKaJbmmTmrQH_71ZVvA0Hzy8wzyE3AKdAaXsIaQ8YxrxjEyAat0Ch9U5mVCG2Had5pfkqpQtpRQVsAnpFil7Z8uxj59NTPHgc03YD9Mu2ViaUxn6vXVfffTNztsc6-KaXAS7K_7mr07Jx-Lpff7SLt-eX-ePy9ZxIY8tp4I5pgR3EoRGrSSiotJ3QQYUwHGjoQtaaiakX3ccLBMefZBrXAtON3xK7sbcQ07fJ1-OZptOOdaThimkCjQCVOp-pFxOpWQfzCH3e5t_DFAzWDH1JzNYqWgzot6l2Jd_UCFgtdKt-C96yF2k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Abdullah, Mohammad</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20231101</creationdate><title>Forecasting nonperforming loans using machine learning</title><author>Abdullah, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-3042c2843c5149798577805e6f5f74137d916f959245eb631a24e7ef5b7b430d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diversification</topic><topic>Financial institutions</topic><topic>Forecasting</topic><topic>Loans</topic><topic>Nonlinear analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Mohammad</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting nonperforming loans using machine learning</atitle><jtitle>Journal of forecasting</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><spage>1664</spage><epage>1689</epage><pages>1664-1689</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2977</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2023-11, Vol.42 (7), p.1664-1689
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_2870819711
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Diversification
Financial institutions
Forecasting
Loans
Nonlinear analysis
title Forecasting nonperforming loans using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20nonperforming%20loans%20using%20machine%20learning&rft.jtitle=Journal%20of%20forecasting&rft.au=Abdullah,%20Mohammad&rft.date=2023-11-01&rft.volume=42&rft.issue=7&rft.spage=1664&rft.epage=1689&rft.pages=1664-1689&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2977&rft_dat=%3Cproquest_cross%3E2870819711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870819711&rft_id=info:pmid/&rfr_iscdi=true