Forecasting nonperforming loans using machine learning

Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2023-11, Vol.42 (7), p.1664-1689
1. Verfasser: Abdullah, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonperforming loans play a critical role in financial institutions' overall performance and can be controlled by forecasting the probable nonperforming loans. This paper employs a series of machine learning techniques to forecast bank nonperforming loans on emerging countries' financial institutions. Using quarterly cross‐sectional data of 322 banks from 15 emerging countries, this study finds that advanced machine learning‐based models outperform simple linear techniques in forecasting bank nonperforming loans. Among all 14 linear and nonlinear models, the random forest model outperforms other models. It achieves a 76.10% accuracy in forecasting nonperforming loans. The result is robust in different performance metrics. The variable importance analysis reveals that bank diversification is the most critical determinant for future nonperforming loans of a bank. Additionally, this study revealed that macroeconomic factors are less prominent in predicting nonperforming loans compared with bank‐specific factors.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.2977