Yield spread selection in predicting recession probabilities

The literature on using yield curves to forecast recessions customarily uses 10‐year–3‐month Treasury yield spread without verification on the pair selection. This study investigates whether the predictive ability of spread can be improved by letting a machine learning algorithm identify the best ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2023-11, Vol.42 (7), p.1772-1785
1. Verfasser: Choi, Jaehyuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The literature on using yield curves to forecast recessions customarily uses 10‐year–3‐month Treasury yield spread without verification on the pair selection. This study investigates whether the predictive ability of spread can be improved by letting a machine learning algorithm identify the best maturity pair and coefficients. Our comprehensive analysis shows that, despite the likelihood gain, the machine learning approach does not significantly improve prediction, owing to the estimation error. This is robust to the forecasting horizon, control variable, sample period, and oversampling of the recession observations. Our finding supports the use of the 10‐year–3‐month spread.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.2980