Total Variation of a Curve Under Chaos on the Real Line and on a Finite Graph
We show that if f : R → R is a continuous transitive map and γ : [ 0 , 1 ] → R is a nonconstant curve having finite total variation, then the total variation of f n ∘ γ tends to infinity exponentially as n → ∞ . A similar result is also proved for a Devaney chaotic map on a graph G .
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2024-02, Vol.23 (1), Article 16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if
f
:
R
→
R
is a continuous transitive map and
γ
:
[
0
,
1
]
→
R
is a nonconstant curve having finite total variation, then the total variation of
f
n
∘
γ
tends to infinity exponentially as
n
→
∞
. A similar result is also proved for a Devaney chaotic map on a graph
G
. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-023-00871-3 |