Total Variation of a Curve Under Chaos on the Real Line and on a Finite Graph

We show that if f : R → R is a continuous transitive map and γ : [ 0 , 1 ] → R is a nonconstant curve having finite total variation, then the total variation of f n ∘ γ tends to infinity exponentially as n → ∞ . A similar result is also proved for a Devaney chaotic map on a graph G .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2024-02, Vol.23 (1), Article 16
Hauptverfasser: Banerjee, Kuntal, Bhattacharyya, Anubrato, Mondal, Subhamoy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if f : R → R is a continuous transitive map and γ : [ 0 , 1 ] → R is a nonconstant curve having finite total variation, then the total variation of f n ∘ γ tends to infinity exponentially as n → ∞ . A similar result is also proved for a Devaney chaotic map on a graph G .
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-023-00871-3