Delineation of groundwater potential zones using the AHP technique: a case study of Alipurduar district, West Bengal
Increasing population with increasing demand of groundwater affects the level of groundwater. In the context of considerable change in the use of groundwater pattern, particularly with continuous increase in demand for groundwater due to many reasons, the present paper attempts to delineate groundwa...
Gespeichert in:
Veröffentlicht in: | Modeling earth systems and environment 2023-11, Vol.9 (4), p.4507-4537 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing population with increasing demand of groundwater affects the level of groundwater. In the context of considerable change in the use of groundwater pattern, particularly with continuous increase in demand for groundwater due to many reasons, the present paper attempts to delineate groundwater potential zones (GWPZ) using integrated remote sensing, geographic information systems (GIS) and analytic hierarchy process (AHP) methods. To transform and harmonize geographic data and weightage ranking to get reliable information, geographic information systems are combined with analytical hierarchical processes. The current study has been done in the district where many areas are under tea garden and cultivated land. The use of excess of groundwater results in a drop in the water level. The mapping and the identification of groundwater potential zones were done for the Ganga alluvial plain of Alipurduar District of India. The groundwater potential index (GPI) was computed based on several factors (e.g., land use–land cover, soil type, geology, elevation, slope, rainfall, normalized difference vegetation index, drainage density, pre- and post-monsoon groundwater depth, etc.). To generate the groundwater potential zone map of the study area, an overlay weighted sum method was applied to integrate all thematic criteria. Groundwater potential index maps have been classified into five zones. The excellent potential zone comprise 50.5% (1583.68 km
2
), good 27.4% (859.26 km
2
), moderate11.3% (354.37 km
2
), poor 7.1% (222.66 km
2
) and very poor 3.7% (116.03 km
2
), respectively. After that, the maps were verified with groundwater-level fluctuation data of 30 observed wells through the ROC (receivers operating characteristic) curve. This paper has important implications for planning the sustainable groundwater plan and also different purposes, such as natural and artificial recharge, watershed delineation and proper water usage, can be effectively implemented in this agriculture-dominated areas in the district. |
---|---|
ISSN: | 2363-6203 2363-6211 |
DOI: | 10.1007/s40808-023-01733-2 |