A one-step electrodeposition method was used to produce monoclinic Cu2SnS3 thin films for the development of solar cells
The monoclinic compound semiconductor Cu 2 SnS 3 (CTS) is a promising material for absorbing solar energy, with a direct bandgap of 0.9 to 1.7 eV, making it an ideal choice for cost-effective thin-film photovoltaic cells. This study presents a method for the one-step electrodeposition of CTS thin fi...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-09, Vol.34 (27), p.1903, Article 1903 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 27 |
container_start_page | 1903 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Boudouma, Abderrazzak Ait Layachi, Omar Hrir, Hala Khoumri, Elmati |
description | The monoclinic compound semiconductor Cu
2
SnS
3
(CTS) is a promising material for absorbing solar energy, with a direct bandgap of 0.9 to 1.7 eV, making it an ideal choice for cost-effective thin-film photovoltaic cells. This study presents a method for the one-step electrodeposition of CTS thin films on FTO substrates at room temperature, without the Sulfurization step. We examined the impact of deposition time on the properties of CTS thin films. Films of high crystalline quality were obtained in 20 min. We used various techniques such as X-ray diffraction, Raman spectroscopy, emission field scanning electron microscopy, energy dispersive spectrometry and UV–visible spectroscopy. By carrying out these analyses, we succeeded in creating a thin film with remarkable morphological, structural and optical characteristics. This film was obtained in just 20 min of deposition and has a bandgap of 1.2 eV. |
doi_str_mv | 10.1007/s10854-023-11390-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870566126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870566126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-75a6fc8eeb02c26f9c2007750d680b2725e3e73bbb24ebad37f30f40ca8c1dfd3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFXAdfQkaZvOUgZvILhQwV1o0xOn0iY1SXV8e6MjuHN1OPD95_IRcsLhjAOo88ihLgsGQjLO5RLYZocseKkkK2rxvEsWsCwVK0oh9slBjK8AUBWyXpDNBfUOWUw4URzQpOA7nHzsU-8dHTGtfUc_mkjniB1Nnk4ZmA3S0Ttvht71hq5m8eAeJE3r3lHbD2Ok1ofcIu3wHQc_jegS9ZZGPzSBGhyGeET2bDNEPP6th-Tp6vJxdcPu7q9vVxd3zEi-TEyVTWVNjdiCMKKySyPyv6qErqqhFUqUKFHJtm1FgW3TSWUl2AJMUxve2U4ektPt3Hz424wx6Vc_B5dXalErKKuKiypTYkuZ4GMMaPUU-rEJn5qD_jast4Z1Nqx_DOtNDsltKGbYvWD4G_1P6gskwIEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870566126</pqid></control><display><type>article</type><title>A one-step electrodeposition method was used to produce monoclinic Cu2SnS3 thin films for the development of solar cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boudouma, Abderrazzak ; Ait Layachi, Omar ; Hrir, Hala ; Khoumri, Elmati</creator><creatorcontrib>Boudouma, Abderrazzak ; Ait Layachi, Omar ; Hrir, Hala ; Khoumri, Elmati</creatorcontrib><description>The monoclinic compound semiconductor Cu
2
SnS
3
(CTS) is a promising material for absorbing solar energy, with a direct bandgap of 0.9 to 1.7 eV, making it an ideal choice for cost-effective thin-film photovoltaic cells. This study presents a method for the one-step electrodeposition of CTS thin films on FTO substrates at room temperature, without the Sulfurization step. We examined the impact of deposition time on the properties of CTS thin films. Films of high crystalline quality were obtained in 20 min. We used various techniques such as X-ray diffraction, Raman spectroscopy, emission field scanning electron microscopy, energy dispersive spectrometry and UV–visible spectroscopy. By carrying out these analyses, we succeeded in creating a thin film with remarkable morphological, structural and optical characteristics. This film was obtained in just 20 min of deposition and has a bandgap of 1.2 eV.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11390-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Copper sulfides ; Electrodeposition ; Electrodes ; Electrolytes ; Energy gap ; Materials Science ; Microscopy ; Optical and Electronic Materials ; Optical properties ; Photovoltaic cells ; Raman spectroscopy ; Room temperature ; Solar cells ; Solar energy ; Substrates ; Sulfurization ; Thin films ; Tin</subject><ispartof>Journal of materials science. Materials in electronics, 2023-09, Vol.34 (27), p.1903, Article 1903</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-75a6fc8eeb02c26f9c2007750d680b2725e3e73bbb24ebad37f30f40ca8c1dfd3</citedby><cites>FETCH-LOGICAL-c319t-75a6fc8eeb02c26f9c2007750d680b2725e3e73bbb24ebad37f30f40ca8c1dfd3</cites><orcidid>0009-0004-9400-3751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11390-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11390-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Boudouma, Abderrazzak</creatorcontrib><creatorcontrib>Ait Layachi, Omar</creatorcontrib><creatorcontrib>Hrir, Hala</creatorcontrib><creatorcontrib>Khoumri, Elmati</creatorcontrib><title>A one-step electrodeposition method was used to produce monoclinic Cu2SnS3 thin films for the development of solar cells</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The monoclinic compound semiconductor Cu
2
SnS
3
(CTS) is a promising material for absorbing solar energy, with a direct bandgap of 0.9 to 1.7 eV, making it an ideal choice for cost-effective thin-film photovoltaic cells. This study presents a method for the one-step electrodeposition of CTS thin films on FTO substrates at room temperature, without the Sulfurization step. We examined the impact of deposition time on the properties of CTS thin films. Films of high crystalline quality were obtained in 20 min. We used various techniques such as X-ray diffraction, Raman spectroscopy, emission field scanning electron microscopy, energy dispersive spectrometry and UV–visible spectroscopy. By carrying out these analyses, we succeeded in creating a thin film with remarkable morphological, structural and optical characteristics. This film was obtained in just 20 min of deposition and has a bandgap of 1.2 eV.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper sulfides</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy gap</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photovoltaic cells</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Substrates</subject><subject>Sulfurization</subject><subject>Thin films</subject><subject>Tin</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOF5ewFXAdfQkaZvOUgZvILhQwV1o0xOn0iY1SXV8e6MjuHN1OPD95_IRcsLhjAOo88ihLgsGQjLO5RLYZocseKkkK2rxvEsWsCwVK0oh9slBjK8AUBWyXpDNBfUOWUw4URzQpOA7nHzsU-8dHTGtfUc_mkjniB1Nnk4ZmA3S0Ttvht71hq5m8eAeJE3r3lHbD2Ok1ofcIu3wHQc_jegS9ZZGPzSBGhyGeET2bDNEPP6th-Tp6vJxdcPu7q9vVxd3zEi-TEyVTWVNjdiCMKKySyPyv6qErqqhFUqUKFHJtm1FgW3TSWUl2AJMUxve2U4ektPt3Hz424wx6Vc_B5dXalErKKuKiypTYkuZ4GMMaPUU-rEJn5qD_jast4Z1Nqx_DOtNDsltKGbYvWD4G_1P6gskwIEY</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Boudouma, Abderrazzak</creator><creator>Ait Layachi, Omar</creator><creator>Hrir, Hala</creator><creator>Khoumri, Elmati</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0009-0004-9400-3751</orcidid></search><sort><creationdate>20230901</creationdate><title>A one-step electrodeposition method was used to produce monoclinic Cu2SnS3 thin films for the development of solar cells</title><author>Boudouma, Abderrazzak ; Ait Layachi, Omar ; Hrir, Hala ; Khoumri, Elmati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-75a6fc8eeb02c26f9c2007750d680b2725e3e73bbb24ebad37f30f40ca8c1dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper sulfides</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy gap</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photovoltaic cells</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Substrates</topic><topic>Sulfurization</topic><topic>Thin films</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudouma, Abderrazzak</creatorcontrib><creatorcontrib>Ait Layachi, Omar</creatorcontrib><creatorcontrib>Hrir, Hala</creatorcontrib><creatorcontrib>Khoumri, Elmati</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudouma, Abderrazzak</au><au>Ait Layachi, Omar</au><au>Hrir, Hala</au><au>Khoumri, Elmati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A one-step electrodeposition method was used to produce monoclinic Cu2SnS3 thin films for the development of solar cells</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>27</issue><spage>1903</spage><pages>1903-</pages><artnum>1903</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The monoclinic compound semiconductor Cu
2
SnS
3
(CTS) is a promising material for absorbing solar energy, with a direct bandgap of 0.9 to 1.7 eV, making it an ideal choice for cost-effective thin-film photovoltaic cells. This study presents a method for the one-step electrodeposition of CTS thin films on FTO substrates at room temperature, without the Sulfurization step. We examined the impact of deposition time on the properties of CTS thin films. Films of high crystalline quality were obtained in 20 min. We used various techniques such as X-ray diffraction, Raman spectroscopy, emission field scanning electron microscopy, energy dispersive spectrometry and UV–visible spectroscopy. By carrying out these analyses, we succeeded in creating a thin film with remarkable morphological, structural and optical characteristics. This film was obtained in just 20 min of deposition and has a bandgap of 1.2 eV.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11390-x</doi><orcidid>https://orcid.org/0009-0004-9400-3751</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-09, Vol.34 (27), p.1903, Article 1903 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2870566126 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Copper Copper sulfides Electrodeposition Electrodes Electrolytes Energy gap Materials Science Microscopy Optical and Electronic Materials Optical properties Photovoltaic cells Raman spectroscopy Room temperature Solar cells Solar energy Substrates Sulfurization Thin films Tin |
title | A one-step electrodeposition method was used to produce monoclinic Cu2SnS3 thin films for the development of solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20one-step%20electrodeposition%20method%20was%20used%20to%20produce%20monoclinic%20Cu2SnS3%20thin%20films%20for%20the%20development%20of%20solar%20cells&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Boudouma,%20Abderrazzak&rft.date=2023-09-01&rft.volume=34&rft.issue=27&rft.spage=1903&rft.pages=1903-&rft.artnum=1903&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11390-x&rft_dat=%3Cproquest_cross%3E2870566126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870566126&rft_id=info:pmid/&rfr_iscdi=true |