Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system
The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2023-10, Vol.17 (10), p.912-916 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 916 |
---|---|
container_issue | 10 |
container_start_page | 912 |
container_title | Nature photonics |
container_volume | 17 |
creator | Suárez-Forero, D. G. Session, D. W. Jalali Mehrabad, M. Knüppel, P. Faelt, S. Wegscheider, W. Hafezi, M. |
description | The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids.
Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling. |
doi_str_mv | 10.1038/s41566-023-01248-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870194510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870194510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_STJLqb9QEFHXIZ0k05T5M0kL3fkOvqFP4mhFd67u5XLOuYcPgFOCzwlm6iJxUgiBMGUIE8oVYntgQiQvEVcl2__dVXEIjlJaYVywktIJeHwaQoeSa1yVw8bBlGPf1bAJ9TJ_vL23JmcXYdWvhyaM99BBA-kVXPaNg7VJqA1V7CuzCXkL0zZl1x6DA2-a5E5-5hS83Fw_z-7Q_OH2fnY5RxUjZUbSM7Ww3laCFbQsmMLCSVZ67CVd2IUtPLGGcs8kEYoaLrgkhForSuExs5JNwdkud4j969qlrFf9OnbjS02VxKTkxYhmCuhONdZMKTqvhxhaE7eaYP2FTu_Q6RGd_kan2WhiO1MaxV3t4l_0P65PwfVyFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870194510</pqid></control><display><type>article</type><title>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suárez-Forero, D. G. ; Session, D. W. ; Jalali Mehrabad, M. ; Knüppel, P. ; Faelt, S. ; Wegscheider, W. ; Hafezi, M.</creator><creatorcontrib>Suárez-Forero, D. G. ; Session, D. W. ; Jalali Mehrabad, M. ; Knüppel, P. ; Faelt, S. ; Wegscheider, W. ; Hafezi, M.</creatorcontrib><description>The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids.
Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01248-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/624/400/2797 ; 639/766/400/1101 ; Applied and Technical Physics ; Broken symmetry ; Coupling ; Gases ; Hole density ; Hybrids ; Light ; Magnetic fields ; Physics ; Physics and Astronomy ; Polaritons ; Polarization ; Polarization (spin alignment) ; Quantum Hall effect ; Quantum Physics</subject><ispartof>Nature photonics, 2023-10, Vol.17 (10), p.912-916</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</citedby><cites>FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</cites><orcidid>0000-0002-6193-3440 ; 0000-0002-2138-5558 ; 0000-0003-1679-4880 ; 0000-0002-9809-9998 ; 0000-0002-2757-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01248-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01248-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Suárez-Forero, D. G.</creatorcontrib><creatorcontrib>Session, D. W.</creatorcontrib><creatorcontrib>Jalali Mehrabad, M.</creatorcontrib><creatorcontrib>Knüppel, P.</creatorcontrib><creatorcontrib>Faelt, S.</creatorcontrib><creatorcontrib>Wegscheider, W.</creatorcontrib><creatorcontrib>Hafezi, M.</creatorcontrib><title>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids.
Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.</description><subject>639/301/119</subject><subject>639/624/400/2797</subject><subject>639/766/400/1101</subject><subject>Applied and Technical Physics</subject><subject>Broken symmetry</subject><subject>Coupling</subject><subject>Gases</subject><subject>Hole density</subject><subject>Hybrids</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polaritons</subject><subject>Polarization</subject><subject>Polarization (spin alignment)</subject><subject>Quantum Hall effect</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_STJLqb9QEFHXIZ0k05T5M0kL3fkOvqFP4mhFd67u5XLOuYcPgFOCzwlm6iJxUgiBMGUIE8oVYntgQiQvEVcl2__dVXEIjlJaYVywktIJeHwaQoeSa1yVw8bBlGPf1bAJ9TJ_vL23JmcXYdWvhyaM99BBA-kVXPaNg7VJqA1V7CuzCXkL0zZl1x6DA2-a5E5-5hS83Fw_z-7Q_OH2fnY5RxUjZUbSM7Ww3laCFbQsmMLCSVZ67CVd2IUtPLGGcs8kEYoaLrgkhForSuExs5JNwdkud4j969qlrFf9OnbjS02VxKTkxYhmCuhONdZMKTqvhxhaE7eaYP2FTu_Q6RGd_kan2WhiO1MaxV3t4l_0P65PwfVyFg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Suárez-Forero, D. G.</creator><creator>Session, D. W.</creator><creator>Jalali Mehrabad, M.</creator><creator>Knüppel, P.</creator><creator>Faelt, S.</creator><creator>Wegscheider, W.</creator><creator>Hafezi, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6193-3440</orcidid><orcidid>https://orcid.org/0000-0002-2138-5558</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0002-9809-9998</orcidid><orcidid>https://orcid.org/0000-0002-2757-6320</orcidid></search><sort><creationdate>20231001</creationdate><title>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</title><author>Suárez-Forero, D. G. ; Session, D. W. ; Jalali Mehrabad, M. ; Knüppel, P. ; Faelt, S. ; Wegscheider, W. ; Hafezi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119</topic><topic>639/624/400/2797</topic><topic>639/766/400/1101</topic><topic>Applied and Technical Physics</topic><topic>Broken symmetry</topic><topic>Coupling</topic><topic>Gases</topic><topic>Hole density</topic><topic>Hybrids</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polaritons</topic><topic>Polarization</topic><topic>Polarization (spin alignment)</topic><topic>Quantum Hall effect</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suárez-Forero, D. G.</creatorcontrib><creatorcontrib>Session, D. W.</creatorcontrib><creatorcontrib>Jalali Mehrabad, M.</creatorcontrib><creatorcontrib>Knüppel, P.</creatorcontrib><creatorcontrib>Faelt, S.</creatorcontrib><creatorcontrib>Wegscheider, W.</creatorcontrib><creatorcontrib>Hafezi, M.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suárez-Forero, D. G.</au><au>Session, D. W.</au><au>Jalali Mehrabad, M.</au><au>Knüppel, P.</au><au>Faelt, S.</au><au>Wegscheider, W.</au><au>Hafezi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>17</volume><issue>10</issue><spage>912</spage><epage>916</epage><pages>912-916</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids.
Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01248-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6193-3440</orcidid><orcidid>https://orcid.org/0000-0002-2138-5558</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0002-9809-9998</orcidid><orcidid>https://orcid.org/0000-0002-2757-6320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2023-10, Vol.17 (10), p.912-916 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2870194510 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/119 639/624/400/2797 639/766/400/1101 Applied and Technical Physics Broken symmetry Coupling Gases Hole density Hybrids Light Magnetic fields Physics Physics and Astronomy Polaritons Polarization Polarization (spin alignment) Quantum Hall effect Quantum Physics |
title | Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-selective%20strong%20light%E2%80%93matter%20coupling%20in%20a%202D%20hole%20gas-microcavity%20system&rft.jtitle=Nature%20photonics&rft.au=Su%C3%A1rez-Forero,%20D.%20G.&rft.date=2023-10-01&rft.volume=17&rft.issue=10&rft.spage=912&rft.epage=916&rft.pages=912-916&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01248-3&rft_dat=%3Cproquest_cross%3E2870194510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870194510&rft_id=info:pmid/&rfr_iscdi=true |