Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system

The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2023-10, Vol.17 (10), p.912-916
Hauptverfasser: Suárez-Forero, D. G., Session, D. W., Jalali Mehrabad, M., Knüppel, P., Faelt, S., Wegscheider, W., Hafezi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 10
container_start_page 912
container_title Nature photonics
container_volume 17
creator Suárez-Forero, D. G.
Session, D. W.
Jalali Mehrabad, M.
Knüppel, P.
Faelt, S.
Wegscheider, W.
Hafezi, M.
description The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids. Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.
doi_str_mv 10.1038/s41566-023-01248-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870194510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870194510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_STJLqb9QEFHXIZ0k05T5M0kL3fkOvqFP4mhFd67u5XLOuYcPgFOCzwlm6iJxUgiBMGUIE8oVYntgQiQvEVcl2__dVXEIjlJaYVywktIJeHwaQoeSa1yVw8bBlGPf1bAJ9TJ_vL23JmcXYdWvhyaM99BBA-kVXPaNg7VJqA1V7CuzCXkL0zZl1x6DA2-a5E5-5hS83Fw_z-7Q_OH2fnY5RxUjZUbSM7Ww3laCFbQsmMLCSVZ67CVd2IUtPLGGcs8kEYoaLrgkhForSuExs5JNwdkud4j969qlrFf9OnbjS02VxKTkxYhmCuhONdZMKTqvhxhaE7eaYP2FTu_Q6RGd_kan2WhiO1MaxV3t4l_0P65PwfVyFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870194510</pqid></control><display><type>article</type><title>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suárez-Forero, D. G. ; Session, D. W. ; Jalali Mehrabad, M. ; Knüppel, P. ; Faelt, S. ; Wegscheider, W. ; Hafezi, M.</creator><creatorcontrib>Suárez-Forero, D. G. ; Session, D. W. ; Jalali Mehrabad, M. ; Knüppel, P. ; Faelt, S. ; Wegscheider, W. ; Hafezi, M.</creatorcontrib><description>The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids. Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01248-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/624/400/2797 ; 639/766/400/1101 ; Applied and Technical Physics ; Broken symmetry ; Coupling ; Gases ; Hole density ; Hybrids ; Light ; Magnetic fields ; Physics ; Physics and Astronomy ; Polaritons ; Polarization ; Polarization (spin alignment) ; Quantum Hall effect ; Quantum Physics</subject><ispartof>Nature photonics, 2023-10, Vol.17 (10), p.912-916</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</citedby><cites>FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</cites><orcidid>0000-0002-6193-3440 ; 0000-0002-2138-5558 ; 0000-0003-1679-4880 ; 0000-0002-9809-9998 ; 0000-0002-2757-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01248-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01248-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Suárez-Forero, D. G.</creatorcontrib><creatorcontrib>Session, D. W.</creatorcontrib><creatorcontrib>Jalali Mehrabad, M.</creatorcontrib><creatorcontrib>Knüppel, P.</creatorcontrib><creatorcontrib>Faelt, S.</creatorcontrib><creatorcontrib>Wegscheider, W.</creatorcontrib><creatorcontrib>Hafezi, M.</creatorcontrib><title>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids. Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.</description><subject>639/301/119</subject><subject>639/624/400/2797</subject><subject>639/766/400/1101</subject><subject>Applied and Technical Physics</subject><subject>Broken symmetry</subject><subject>Coupling</subject><subject>Gases</subject><subject>Hole density</subject><subject>Hybrids</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polaritons</subject><subject>Polarization</subject><subject>Polarization (spin alignment)</subject><subject>Quantum Hall effect</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_STJLqb9QEFHXIZ0k05T5M0kL3fkOvqFP4mhFd67u5XLOuYcPgFOCzwlm6iJxUgiBMGUIE8oVYntgQiQvEVcl2__dVXEIjlJaYVywktIJeHwaQoeSa1yVw8bBlGPf1bAJ9TJ_vL23JmcXYdWvhyaM99BBA-kVXPaNg7VJqA1V7CuzCXkL0zZl1x6DA2-a5E5-5hS83Fw_z-7Q_OH2fnY5RxUjZUbSM7Ww3laCFbQsmMLCSVZ67CVd2IUtPLGGcs8kEYoaLrgkhForSuExs5JNwdkud4j969qlrFf9OnbjS02VxKTkxYhmCuhONdZMKTqvhxhaE7eaYP2FTu_Q6RGd_kan2WhiO1MaxV3t4l_0P65PwfVyFg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Suárez-Forero, D. G.</creator><creator>Session, D. W.</creator><creator>Jalali Mehrabad, M.</creator><creator>Knüppel, P.</creator><creator>Faelt, S.</creator><creator>Wegscheider, W.</creator><creator>Hafezi, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6193-3440</orcidid><orcidid>https://orcid.org/0000-0002-2138-5558</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0002-9809-9998</orcidid><orcidid>https://orcid.org/0000-0002-2757-6320</orcidid></search><sort><creationdate>20231001</creationdate><title>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</title><author>Suárez-Forero, D. G. ; Session, D. W. ; Jalali Mehrabad, M. ; Knüppel, P. ; Faelt, S. ; Wegscheider, W. ; Hafezi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f38bdfdc6352953806e739f0f72bdbd5f1da24f371682a4647112dd696f03d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119</topic><topic>639/624/400/2797</topic><topic>639/766/400/1101</topic><topic>Applied and Technical Physics</topic><topic>Broken symmetry</topic><topic>Coupling</topic><topic>Gases</topic><topic>Hole density</topic><topic>Hybrids</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polaritons</topic><topic>Polarization</topic><topic>Polarization (spin alignment)</topic><topic>Quantum Hall effect</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suárez-Forero, D. G.</creatorcontrib><creatorcontrib>Session, D. W.</creatorcontrib><creatorcontrib>Jalali Mehrabad, M.</creatorcontrib><creatorcontrib>Knüppel, P.</creatorcontrib><creatorcontrib>Faelt, S.</creatorcontrib><creatorcontrib>Wegscheider, W.</creatorcontrib><creatorcontrib>Hafezi, M.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suárez-Forero, D. G.</au><au>Session, D. W.</au><au>Jalali Mehrabad, M.</au><au>Knüppel, P.</au><au>Faelt, S.</au><au>Wegscheider, W.</au><au>Hafezi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>17</volume><issue>10</issue><spage>912</spage><epage>916</epage><pages>912-916</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids. Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01248-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6193-3440</orcidid><orcidid>https://orcid.org/0000-0002-2138-5558</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0002-9809-9998</orcidid><orcidid>https://orcid.org/0000-0002-2757-6320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2023-10, Vol.17 (10), p.912-916
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2870194510
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/301/119
639/624/400/2797
639/766/400/1101
Applied and Technical Physics
Broken symmetry
Coupling
Gases
Hole density
Hybrids
Light
Magnetic fields
Physics
Physics and Astronomy
Polaritons
Polarization
Polarization (spin alignment)
Quantum Hall effect
Quantum Physics
title Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-selective%20strong%20light%E2%80%93matter%20coupling%20in%20a%202D%20hole%20gas-microcavity%20system&rft.jtitle=Nature%20photonics&rft.au=Su%C3%A1rez-Forero,%20D.%20G.&rft.date=2023-10-01&rft.volume=17&rft.issue=10&rft.spage=912&rft.epage=916&rft.pages=912-916&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01248-3&rft_dat=%3Cproquest_cross%3E2870194510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870194510&rft_id=info:pmid/&rfr_iscdi=true