Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system

The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2023-10, Vol.17 (10), p.912-916
Hauptverfasser: Suárez-Forero, D. G., Session, D. W., Jalali Mehrabad, M., Knüppel, P., Faelt, S., Wegscheider, W., Hafezi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids. Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-023-01248-3