Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system
The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2023-10, Vol.17 (10), p.912-916 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids.
Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-023-01248-3 |