Combining Aggregate Demand and Discrete Choice Data with Application to Deer License Demand in Indiana

Estimating demand for licenses for recreational activities is complicated because of a lack of meaningful variation across time, space, buyer types, and license attributes, including price. Prior work uses discrete choice experiments (DCEs) to overcome this challenge, but the resulting demand models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Land economics 2023-11, Vol.99 (4), p.477-489
Hauptverfasser: Reeling, Carson, Erickson, Dane, Kim, Yusun, Lee, John G, Widmar, Nicole J. O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimating demand for licenses for recreational activities is complicated because of a lack of meaningful variation across time, space, buyer types, and license attributes, including price. Prior work uses discrete choice experiments (DCEs) to overcome this challenge, but the resulting demand models are unlikely to replicate observed demands in the absence of ad hoc calibration procedures. We use a generalized method of moments–based approach that combines DCE data with observed market share data to estimate a choice model that yields demand functions that much more closely replicate observed data.
ISSN:0023-7639
1543-8325
DOI:10.3368/le.99.4.120621-0144R1