Structural Behavior and Load Distribution Factor of a T-Girder Bridge with Various Truss Diaphragms

A diaphragm is an essential component of a T-girder bridge. Evaluating the influence of various truss diaphragms (TDs) on the structural behavior and load distribution factor of T-girder bridges assists in bridge design and strengthening. In this study, a series of experiments and simulations were c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bridge engineering 2023-12, Vol.28 (12)
Hauptverfasser: Chen, Chen, Yang, Caiqian, Zhang, Kai, Wang, Weinan, Dong, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A diaphragm is an essential component of a T-girder bridge. Evaluating the influence of various truss diaphragms (TDs) on the structural behavior and load distribution factor of T-girder bridges assists in bridge design and strengthening. In this study, a series of experiments and simulations were conducted to investigate the strengthening effect of two types of TDs (i.e., triangle-TDs and K-TDs) based on a small-scale T-girder bridge model. Formulas for the flexural rigidity of the two types of TDs were proposed and verified by using rigid-joint girder methods, experiments, and simulations. Then, taking the K-TD as an example, the calculation method for the stiffness of the truss was analyzed and derived based on rigid-joint girder and graphic multiplication methods. The results showed that K-TDs had a better strengthening effect than triangle-TDs. The deflection and strain of the K-TD-strengthened T-girder bridge were reduced by 21% and 16%, respectively, compared with those of the triangle-TD-strengthened bridge. The formulas for flexural rigidity were proposed and used to calculate the load distribution factor. The maximum error of the calculated load distribution factor was 16% compared with the simulation and experimental results. Moreover, the calculation method for the stiffness of the K-TDs was analyzed and obtained.
ISSN:1084-0702
1943-5592
DOI:10.1061/JBENF2.BEENG-6171