Numerical Simulation and Parameter Optimization of a New Reed–Nylon Net Combined Sand Fence

This paper introduces a kind of double-row reed–nylon net combined sand barrier. Using the computational fluid dynamics (CFD) method and the Euler–Euler double-fluid model, the new sand fences’ windproof effect and airflow features are simulated under different porosities and spacings, and the optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-09, Vol.15 (18), p.13920
Hauptverfasser: Peng, Hao, Jin, Afang, Zhang, Shuzhi, Zheng, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a kind of double-row reed–nylon net combined sand barrier. Using the computational fluid dynamics (CFD) method and the Euler–Euler double-fluid model, the new sand fences’ windproof effect and airflow features are simulated under different porosities and spacings, and the optimal configuration parameters are selected. The new sand fence has better windproof performance and practical significance than double-row reed and double-row nylon net fences. The new sand fences with a porosity of 0.3–0.4 and spacing of 28 H provide a longer protection range and a better wind protection effect. Considering the serious sand damage in China’s Taklamakan Desert, the new fences’ impact on sand buildup is examined. The combined sand fences have powerful sand blocking and accumulation effects, even though there is only a small quantity of sand accumulation on the leeward side of the second row. The sand particles primarily settle between sand fences in the center and rear areas. The combination of sand fences made of different materials combines the advantages of both, improves the construction efficiency and service life, and provides a more economical and efficient sand barrier arrangement for the arrangement of wind and sand-blocking facilities around railroads and highways in desert areas.
ISSN:2071-1050
2071-1050
DOI:10.3390/su151813920