Precision-aware deterministic and probabilistic error bounds for floating point summation

We analyze the forward error in the floating point summation of real numbers, for computations in low precision or extreme-scale problem dimensions that push the limits of the precision. We present a systematic recurrence for a martingale on a computational tree, which leads to explicit and interpre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2023-10, Vol.155 (1-2), p.83-119
Hauptverfasser: Hallman, Eric, Ipsen, Ilse C. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the forward error in the floating point summation of real numbers, for computations in low precision or extreme-scale problem dimensions that push the limits of the precision. We present a systematic recurrence for a martingale on a computational tree, which leads to explicit and interpretable bounds with nonlinear terms controlled explicitly rather than by big-O terms. Two probability parameters strengthen the precision-awareness of our bounds: one parameter controls the first order terms in the summation error, while the second one is designed for controlling higher order terms in low precision or extreme-scale problem dimensions. Our systematic approach yields new deterministic and probabilistic error bounds for three classes of mono-precision algorithms: general summation, shifted general summation, and compensated (sequential) summation. Extension of our systematic error analysis to mixed-precision summation algorithms that allow any number of precisions yields the first probabilistic bounds for the mixed-precision FABsum algorithm. Numerical experiments illustrate that the probabilistic bounds are accurate, and that among the three classes of mono-precision algorithms, compensated summation is generally the most accurate. As for mixed precision algorithms, our recommendation is to minimize the magnitude of intermediate partial sums relative to the precision in which they are computed.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-023-01370-y