Simulating the Impact of Ore and Water Quality on Flotation Recovery during the Life of a Mine

Blending of different ore types in the concentrator feed contributes significantly to maintaining a high recovery of valuable minerals with required grades in the concentrate. It is feasible to develop an ore-blending scheme over the life of a mine already in the design phase of the plant. In additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2023-09, Vol.13 (9), p.1230
Hauptverfasser: Aaltonen, Annukka, Izart, Caroline, Lyyra, Mikko, Lang, Aleksandra, Saari, Eija, Dahl, Olli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blending of different ore types in the concentrator feed contributes significantly to maintaining a high recovery of valuable minerals with required grades in the concentrate. It is feasible to develop an ore-blending scheme over the life of a mine already in the design phase of the plant. In addition to ore characteristics, water quality is known to impact mineral recovery. A blending plan could also be developed for the different water streams of a future concentrator. This paper describes a novel modeling and simulation approach to predict metallurgical response combining ore types and water quality. The model is based on kinetic laboratory flotation test data, and it was tested on a case study. As a result, rougher flotation grade-recovery curves dependent on ore types and water quality are presented over the predicted life of the mine. The simulation results can be exploited in project design to maximize the recovery of valuable minerals and to ensure environmentally sound and profitable mining operations. Overall, the developed modeling tool can be applied widely for minerals processed by using froth flotation and water types available for kinetic laboratory flotation tests.
ISSN:2075-163X
2075-163X
DOI:10.3390/min13091230