Polytopality of simple games
The Bier sphere \(Bier(\mathcal{G}) = Bier(K) = K\ast_\Delta K^\circ\) and the canonical fan \(Fan(\Gamma) = Fan(K)\) are combinatorial/geometric companions of a simple game \(\mathcal{G} = (P,\Gamma)\) (equivalently the associated simplicial complex \(K\)), where \(P\) is the set of players, \(\Gam...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Bier sphere \(Bier(\mathcal{G}) = Bier(K) = K\ast_\Delta K^\circ\) and the canonical fan \(Fan(\Gamma) = Fan(K)\) are combinatorial/geometric companions of a simple game \(\mathcal{G} = (P,\Gamma)\) (equivalently the associated simplicial complex \(K\)), where \(P\) is the set of players, \(\Gamma\subseteq 2^P\) is the set of wining coalitions, and \(K = 2^P\setminus \Gamma\) is the simplicial complex of losing coalitions. We characterize roughly weighted majority games as the games \(\Gamma\) such that \(Bier(\mathcal{G})\) (respectively \(Fan(\Gamma)\)) is canonically polytopal (canonically pseudo-polytopal) and show, by an experimental/theoretical argument, that all simple games with at most five players are polytopal. |
---|---|
ISSN: | 2331-8422 |