Bionic root inspired CNT/regenerated cellulose aerogel membrane/Cu nanowires for enhancing physiological comfort
Traditional thermal management and humidity management systems consume a large amount of energy and thus aggravate the energy crisis. Here, CNT/regenerated cellulose aerogel membrane/copper nanowires (CRCAMCNWs) with thermal and humidity management were successfully fabricated using layer-by-layer a...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2023-10, Vol.30 (15), p.9529-9542 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional thermal management and humidity management systems consume a large amount of energy and thus aggravate the energy crisis. Here, CNT/regenerated cellulose aerogel membrane/copper nanowires (CRCAMCNWs) with thermal and humidity management were successfully fabricated using layer-by-layer assembly. This composite takes advantage of high infrared reflectivity of the copper (Cu) nanowires and the high solar absorptivity of CNTs. Under simulated sunlight exposure, the surface temperature of CRCAMCNWs was 11.4 °C higher than the regenerated cellulose aerogel membrane, indicating that CRCAMCNWs have excellent thermal management properties. The excellent sweat transport properties of CRCAMCNWs are demonstrated by the fact that water can penetrate from the Cu side to the inside within 3.5 s. For insensible sweat, the water vapor transmission rate of CRCAMCNWs is 0.708 mg cm
−2
h
−1
, which transfer insensible sweat from the inner side of to the outer side for enhanced wearer comfort. Moreover, CRCAMCNWs exhibit excellent antibacterial properties due to the presence of Cu nanowires. This work not only provides a recycling strategy to fabricate bionic-root inspired wearable materials by using sugarcane bagasse as raw material but also demonstrates intriguing applications in enhancing physiological comfort thanks to its low energy consumption and environmental friendliness. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-023-05455-7 |