Accelerating Neural Style-Transfer Using Contrastive Learning for Unsupervised Satellite Image Super-Resolution
Contrastive learning is a self-supervised comparison of two samples to identify characteristics and traits that distinguish one data class from another, improving performance on visual tasks. The performance of existing super-resolution-based approaches degrades with increasing scaling factors, henc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Contrastive learning is a self-supervised comparison of two samples to identify characteristics and traits that distinguish one data class from another, improving performance on visual tasks. The performance of existing super-resolution-based approaches degrades with increasing scaling factors, hence practically not useful for high-resolution (HR) imaging applications. We proposed a novel framework that uses contrastive training followed by a decoder to generate an "Artificial style image," which is utilized as a style image for neural style transfer (NST) learning for image super-resolution in an unsupervised manner. The idea is to benefit from HR textures and features as a style and transfer on an original low-resolution (LR) content image as base elements. The proposed framework has three benefits: 1) the framework is capable of super-resolving different modalities of data like single-band remote sensing images, multispectral band images, RGB remote sensing images, and real-world natural images; 2) proposed method outperforms existing unsupervised and also supervised learning-based methods for both visual and qualitative performance; and 3) leveraging NST learning for remote sensing image super-resolution is performed without sacrificing speed and resources. The framework is novel since the work on NST learning to super-resolve remote sensing images in an unsupervised manner has yet to be acknowledged. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2023.3314283 |