RETRACTED: A Global Structural Hypergraph Convolutional Model for Bundle Recommendation
Bundle recommendations provide personalized suggestions to users by combining related items into bundles, aiming to enhance users’ shopping experiences and boost merchants’ sales revenue. Existing solutions based on graph neural networks (GNN) face several significant challenges: (1) it is demanding...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-09, Vol.12 (18), p.3952 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bundle recommendations provide personalized suggestions to users by combining related items into bundles, aiming to enhance users’ shopping experiences and boost merchants’ sales revenue. Existing solutions based on graph neural networks (GNN) face several significant challenges: (1) it is demanding to explicitly model multiple complex associations using standard graph neural networks, (2) numerous additional nodes and edges are introduced to approximate higher-order associations, and (3) the user–bundle historical interaction data are highly sparse. In this work, we propose a global structural hypergraph convolutional model for bundle recommendation (SHCBR) to address the above problems. Specifically, we jointly incorporate multiple complex interactions between users, items, and bundles into a relational hypergraph without introducing additional nodes and edges. The hypergraph structure inherently incorporates higher-order associations, thereby alleviating the training burden on neural networks and the dilemma of scarce data effectively. In addition, we design a special matrix propagation rule that captures non-pairwise complex relationships between entities. Using item nodes as links, structural hypergraph convolutional networks learn representations of users and bundles on a relational hypergraph. Experiments conducted on two real-world datasets demonstrate that the SHCBR outperforms the state-of-the-art baselines by 11.07–25.66% on Recall and 16.81–33.53% on NDCG. Experimental results further indicate that the approach based on hypergraphs can offer new insights for addressing bundle recommendation challenges. The codes and datasets have been publicly released on GitHub. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics12183952 |