Dirichlet density on sets of primes for linear combinations of Hecke eigenvalues
Let f and g be two holomorphic cusp forms for the full modular group SL(2,Z). Denote by λf(n) and λg(n) the Hecke eigenvalue of f and g, respectively. In this paper, we are interested in Dirichlet density on sets of primes for linear combinations of λf(n) and λg(n).
Gespeichert in:
Veröffentlicht in: | Scientia magna 2022-01, Vol.17 (1), p.45-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f and g be two holomorphic cusp forms for the full modular group SL(2,Z). Denote by λf(n) and λg(n) the Hecke eigenvalue of f and g, respectively. In this paper, we are interested in Dirichlet density on sets of primes for linear combinations of λf(n) and λg(n). |
---|---|
ISSN: | 1556-6706 |