A Case Study of the Solar and Lunar Semidiurnal Tide Response to the 2013 Sudden Stratospheric Warming

This study investigates the response of the semidiurnal tide (SDT) to the 2013 major sudden stratospheric warming (SSW) event using meteor radar wind observations and mechanistic tidal model simulations. In the model, the background atmosphere is constrained to meteorological fields from the Navy Gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2023-09, Vol.128 (9), p.n/a
Hauptverfasser: Caspel, Willem E., Espy, Patrick, Hibbins, Robert, Stober, Gunter, Brown, Peter, Jacobi, Christoph, Kero, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the response of the semidiurnal tide (SDT) to the 2013 major sudden stratospheric warming (SSW) event using meteor radar wind observations and mechanistic tidal model simulations. In the model, the background atmosphere is constrained to meteorological fields from the Navy Global Environmental Model—High Altitude analysis system. The solar (thermal) and lunar (gravitational) SDT components are forced by incorporating hourly temperature tendency fields from the ERA5 forecast model, and by specifying the M2 and N2 lunar gravitational potentials, respectively. The simulated SDT response is compared against meteor wind observations from the CMOR (43.3°N, 80.8°W), Collm (51.3°N, 13.0°E), and Kiruna (67.5°N, 20.1°E) radars, showing close agreement with the observed amplitude and phase variability. Numerical experiments investigate the individual roles of the solar and lunar SDT components in shaping the net SDT response. Further experiments isolate the impact of changing propagation conditions through the zonal mean background atmosphere, non‐linear wave‐wave interactions, and the SSW‐induced stratospheric ozone redistribution. Results indicate that between 80 and 97 km altitude in the northern hemisphere mid‐to‐high latitudes the net SDT response is driven by the solar SDT component, which itself is shaped by changing propagation conditions through the zonal mean background atmosphere and by non‐linear wave‐wave interactions. In addition, it is demonstrated that as a result of the rapidly varying solar SDT during the SSW the contribution of the lunar SDT to the total measured tidal field can be significantly overestimated. Key Points Simulations of the semidiurnal tide (SDT) are compared against meteor wind observations in the mid‐to‐high latitude northern hemisphere during the 2013 sudden stratospheric warming Individual lunar and solar SDT simulations find that the net tidal response is largely driven by the solar component The response of the solar SDT is driven by changing zonal mean propagation conditions and by non‐linear interactions with planetary waves
ISSN:2169-9380
2169-9402
DOI:10.1029/2023JA031680