Non-Abelian dynamical gauge field and topological superfluids in optical Raman lattice
We propose an experimental scheme to realize non-Abelian dynamical gauge field for ultracold fermions, which induces a novel pairing mechanism of topological superfluidity. The dynamical gauge fields arise from nontrivial interplay effect between the strong Zeeman splitting and Hubbard interaction i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an experimental scheme to realize non-Abelian dynamical gauge field for ultracold fermions, which induces a novel pairing mechanism of topological superfluidity. The dynamical gauge fields arise from nontrivial interplay effect between the strong Zeeman splitting and Hubbard interaction in a two-dimensional (2D) optical Raman lattice. The spin-flip transitions are forbidden by the large Zeeman detuning, but are restored when the Zeeman splitting is compensated by Hubbard interaction. This scheme allows to generate a dynamical non-Abelian gauge field that leads to a Dirac type correlated 2D spin-orbit interaction depending on local state configurations. The topological superfluid from a novel pairing driven by 2D dynamical gauge fields is reached, with analytic and numerical results being obtained. Our work may open up a door to emulate non-Abelian dynamical gauge fields and correlated topological phases with experimental feasibility. |
---|---|
ISSN: | 2331-8422 |