Cycle Partitions in Dense Regular Digraphs and Oriented Graphs
A conjecture of Jackson from 1981 states that every \(d\)-regular oriented graph on \(n\) vertices with \(n\leq 4d+1\) is Hamiltonian. We prove this conjecture for sufficiently large \(n\). In fact we prove a more general result that for all \(\alpha>0\), there exists \(n_0=n_0(\alpha)\) such tha...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A conjecture of Jackson from 1981 states that every \(d\)-regular oriented graph on \(n\) vertices with \(n\leq 4d+1\) is Hamiltonian. We prove this conjecture for sufficiently large \(n\). In fact we prove a more general result that for all \(\alpha>0\), there exists \(n_0=n_0(\alpha)\) such that every \(d\)-regular digraph on \(n\geq n_0\) vertices with \(d \geq \alpha n \) can be covered by at most \(n/(d+1)\) vertex-disjoint cycles, and moreover that if \(G\) is an oriented graph, then at most \(n/(2d+1)\) cycles suffice. |
---|---|
ISSN: | 2331-8422 |