A Multiscale Autoencoder (MSAE) Framework for End-to-End Neural Network Speech Enhancement
Neural network approaches to single-channel speech enhancement have received much recent attention. In particular, mask-based architectures have achieved significant performance improvements over conventional methods. This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neur...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neural network approaches to single-channel speech enhancement have received much recent attention. In particular, mask-based architectures have achieved significant performance improvements over conventional methods. This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neural network speech enhancement. The MSAE performs spectral decomposition of an input waveform within separate band-limited branches, each operating with a different rate and scale, to extract a sequence of multiscale embeddings. The proposed framework features intuitive parameterization of the autoencoder, including a flexible spectral band design based on the Constant-Q transform. Additionally, the MSAE is constructed entirely of differentiable operators, allowing it to be implemented within an end-to-end neural network, and be discriminatively trained. The MSAE draws motivation both from recent multiscale network topologies and from traditional multiresolution transforms in speech processing. Experimental results show the MSAE to provide clear performance benefits relative to conventional single-branch autoencoders. Additionally, the proposed framework is shown to outperform a variety of state-of-the-art enhancement systems, both in terms of objective speech quality metrics and automatic speech recognition accuracy. |
---|---|
ISSN: | 2331-8422 |