A Universal Inequality for Stability of Coarse Lipschitz Embeddings
Let X and Y be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If f : X → Y is a standard coarse Lipschitz embedding, then for each x * ∈ Lip 0 ( X ) there exist α, γ > 0 depending only on f and Q x *...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2023-09, Vol.39 (9), p.1805-1816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1816 |
---|---|
container_issue | 9 |
container_start_page | 1805 |
container_title | Acta mathematica Sinica. English series |
container_volume | 39 |
creator | Dai, Duan Xu Zhang, Ji Chao Fang, Quan Qing Sun, Long Fa Zheng, Ben Tuo |
description | Let
X
and
Y
be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If
f
:
X
→
Y
is a standard coarse Lipschitz embedding, then for each
x
* ∈ Lip
0
(
X
) there exist
α, γ
> 0 depending only on
f
and
Q
x
*
∈ Lip
0
(
Y
) with
‖
Q
x
*
‖
L
i
p
≤
α
‖
x
*
‖
L
i
p
such that
|
Q
x
*
f
(
x
)
−
x
*
(
x
)
|
≤
γ
‖
x
*
‖
L
i
p
,
f
o
r
a
l
l
x
∈
X
.
Coarse stability for a pair of metric spaces is studied. This can be considered as a coarse version of Qian Problem. As an application, we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual. Indeed, we show that
X
is not a Lipschitz retract of its bidual if
X
is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract. If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space, then the problem also has a negative answer for a separable space. |
doi_str_mv | 10.1007/s10114-023-2136-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867254064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867254064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-11910e0d7f989588e6588840711d67e137623354cca8f91a02de0651a644afd03</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvAc_R50rz1OMrUwcCD7hyyNpkdW7slnTA_vZ0dePLyvMD_BX6E3CM8IoB-SgiIggHPGMdMMXFBRiiynGmF-vJ8G4nqmtyktAaQMgc1IsWELpr6y8fkNnTW-P3BberuSEMb6XvnlvXv1wZatC4mT-f1LpWfdfdNp9ulr6q6WaVbchXcJvm78x6TxfP0o3hl87eXWTGZs5Ir0zHEHMFDpUNucmmMV_0wAjRipbTHTCueZVKUpTMhRwe88qAkOiWECxVkY_Iw5O5iuz_41Nl1e4hNX2m5UZpLAUr0KhxUZWxTij7YXay3Lh4tgj2xsgMr27OyJ1b25OGDJ_XaZuXjX_L_ph_532nm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867254064</pqid></control><display><type>article</type><title>A Universal Inequality for Stability of Coarse Lipschitz Embeddings</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Dai, Duan Xu ; Zhang, Ji Chao ; Fang, Quan Qing ; Sun, Long Fa ; Zheng, Ben Tuo</creator><creatorcontrib>Dai, Duan Xu ; Zhang, Ji Chao ; Fang, Quan Qing ; Sun, Long Fa ; Zheng, Ben Tuo</creatorcontrib><description>Let
X
and
Y
be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If
f
:
X
→
Y
is a standard coarse Lipschitz embedding, then for each
x
* ∈ Lip
0
(
X
) there exist
α, γ
> 0 depending only on
f
and
Q
x
*
∈ Lip
0
(
Y
) with
‖
Q
x
*
‖
L
i
p
≤
α
‖
x
*
‖
L
i
p
such that
|
Q
x
*
f
(
x
)
−
x
*
(
x
)
|
≤
γ
‖
x
*
‖
L
i
p
,
f
o
r
a
l
l
x
∈
X
.
Coarse stability for a pair of metric spaces is studied. This can be considered as a coarse version of Qian Problem. As an application, we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual. Indeed, we show that
X
is not a Lipschitz retract of its bidual if
X
is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract. If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space, then the problem also has a negative answer for a separable space.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-023-2136-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Banach spaces ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Metric space ; Stability</subject><ispartof>Acta mathematica Sinica. English series, 2023-09, Vol.39 (9), p.1805-1816</ispartof><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2023</rights><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-11910e0d7f989588e6588840711d67e137623354cca8f91a02de0651a644afd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-023-2136-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-023-2136-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Dai, Duan Xu</creatorcontrib><creatorcontrib>Zhang, Ji Chao</creatorcontrib><creatorcontrib>Fang, Quan Qing</creatorcontrib><creatorcontrib>Sun, Long Fa</creatorcontrib><creatorcontrib>Zheng, Ben Tuo</creatorcontrib><title>A Universal Inequality for Stability of Coarse Lipschitz Embeddings</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>Let
X
and
Y
be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If
f
:
X
→
Y
is a standard coarse Lipschitz embedding, then for each
x
* ∈ Lip
0
(
X
) there exist
α, γ
> 0 depending only on
f
and
Q
x
*
∈ Lip
0
(
Y
) with
‖
Q
x
*
‖
L
i
p
≤
α
‖
x
*
‖
L
i
p
such that
|
Q
x
*
f
(
x
)
−
x
*
(
x
)
|
≤
γ
‖
x
*
‖
L
i
p
,
f
o
r
a
l
l
x
∈
X
.
Coarse stability for a pair of metric spaces is studied. This can be considered as a coarse version of Qian Problem. As an application, we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual. Indeed, we show that
X
is not a Lipschitz retract of its bidual if
X
is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract. If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space, then the problem also has a negative answer for a separable space.</description><subject>Banach spaces</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Stability</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LwzAYx4MoOKcfwFvAc_R50rz1OMrUwcCD7hyyNpkdW7slnTA_vZ0dePLyvMD_BX6E3CM8IoB-SgiIggHPGMdMMXFBRiiynGmF-vJ8G4nqmtyktAaQMgc1IsWELpr6y8fkNnTW-P3BberuSEMb6XvnlvXv1wZatC4mT-f1LpWfdfdNp9ulr6q6WaVbchXcJvm78x6TxfP0o3hl87eXWTGZs5Ir0zHEHMFDpUNucmmMV_0wAjRipbTHTCueZVKUpTMhRwe88qAkOiWECxVkY_Iw5O5iuz_41Nl1e4hNX2m5UZpLAUr0KhxUZWxTij7YXay3Lh4tgj2xsgMr27OyJ1b25OGDJ_XaZuXjX_L_ph_532nm</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Dai, Duan Xu</creator><creator>Zhang, Ji Chao</creator><creator>Fang, Quan Qing</creator><creator>Sun, Long Fa</creator><creator>Zheng, Ben Tuo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230901</creationdate><title>A Universal Inequality for Stability of Coarse Lipschitz Embeddings</title><author>Dai, Duan Xu ; Zhang, Ji Chao ; Fang, Quan Qing ; Sun, Long Fa ; Zheng, Ben Tuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-11910e0d7f989588e6588840711d67e137623354cca8f91a02de0651a644afd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Duan Xu</creatorcontrib><creatorcontrib>Zhang, Ji Chao</creatorcontrib><creatorcontrib>Fang, Quan Qing</creatorcontrib><creatorcontrib>Sun, Long Fa</creatorcontrib><creatorcontrib>Zheng, Ben Tuo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Duan Xu</au><au>Zhang, Ji Chao</au><au>Fang, Quan Qing</au><au>Sun, Long Fa</au><au>Zheng, Ben Tuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Inequality for Stability of Coarse Lipschitz Embeddings</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>39</volume><issue>9</issue><spage>1805</spage><epage>1816</epage><pages>1805-1816</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Let
X
and
Y
be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If
f
:
X
→
Y
is a standard coarse Lipschitz embedding, then for each
x
* ∈ Lip
0
(
X
) there exist
α, γ
> 0 depending only on
f
and
Q
x
*
∈ Lip
0
(
Y
) with
‖
Q
x
*
‖
L
i
p
≤
α
‖
x
*
‖
L
i
p
such that
|
Q
x
*
f
(
x
)
−
x
*
(
x
)
|
≤
γ
‖
x
*
‖
L
i
p
,
f
o
r
a
l
l
x
∈
X
.
Coarse stability for a pair of metric spaces is studied. This can be considered as a coarse version of Qian Problem. As an application, we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual. Indeed, we show that
X
is not a Lipschitz retract of its bidual if
X
is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract. If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space, then the problem also has a negative answer for a separable space.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-023-2136-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2023-09, Vol.39 (9), p.1805-1816 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_2867254064 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Banach spaces Hilbert space Mathematics Mathematics and Statistics Metric space Stability |
title | A Universal Inequality for Stability of Coarse Lipschitz Embeddings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Inequality%20for%20Stability%20of%20Coarse%20Lipschitz%20Embeddings&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Dai,%20Duan%20Xu&rft.date=2023-09-01&rft.volume=39&rft.issue=9&rft.spage=1805&rft.epage=1816&rft.pages=1805-1816&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-023-2136-4&rft_dat=%3Cproquest_cross%3E2867254064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867254064&rft_id=info:pmid/&rfr_iscdi=true |