A Universal Inequality for Stability of Coarse Lipschitz Embeddings
Let X and Y be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If f : X → Y is a standard coarse Lipschitz embedding, then for each x * ∈ Lip 0 ( X ) there exist α, γ > 0 depending only on f and Q x *...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2023-09, Vol.39 (9), p.1805-1816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
and
Y
be two pointed metric spaces. In this article, we give a generalization of the Cheng–Dong–Zhang theorem for coarse Lipschitz embeddings as follows: If
f
:
X
→
Y
is a standard coarse Lipschitz embedding, then for each
x
* ∈ Lip
0
(
X
) there exist
α, γ
> 0 depending only on
f
and
Q
x
*
∈ Lip
0
(
Y
) with
‖
Q
x
*
‖
L
i
p
≤
α
‖
x
*
‖
L
i
p
such that
|
Q
x
*
f
(
x
)
−
x
*
(
x
)
|
≤
γ
‖
x
*
‖
L
i
p
,
f
o
r
a
l
l
x
∈
X
.
Coarse stability for a pair of metric spaces is studied. This can be considered as a coarse version of Qian Problem. As an application, we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual. Indeed, we show that
X
is not a Lipschitz retract of its bidual if
X
is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract. If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space, then the problem also has a negative answer for a separable space. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-023-2136-4 |