Gardener's Hyperbolas and the Dragged-Point Principle
We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic "gardener's ellipse" construction and Perrault's construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2021-12, Vol.128 (10), p.911-921 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic "gardener's ellipse" construction and Perrault's construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end of a link of fixed length. We show that a frictional device such as this, with a single frictional element, traces the same locus regardless of the friction model, provided only that this is isotropic. This allows the introduction of a "purely geometrical" principle for tractional constructions more general than that of Huygens (1693). |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.1080/00029890.2021.1982634 |