Gardener's Hyperbolas and the Dragged-Point Principle

We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic "gardener's ellipse" construction and Perrault's construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2021-12, Vol.128 (10), p.911-921
Hauptverfasser: Dawson, Robert, Milici, Pietro, Plantevin, Frédérique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic "gardener's ellipse" construction and Perrault's construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end of a link of fixed length. We show that a frictional device such as this, with a single frictional element, traces the same locus regardless of the friction model, provided only that this is isotropic. This allows the introduction of a "purely geometrical" principle for tractional constructions more general than that of Huygens (1693).
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2021.1982634