Game Connectivity and Adaptive Dynamics
We analyse the typical structure of games in terms of the connectivity properties of their best-response graphs. Our central result shows that almost every game that is 'generic' (without indifferences) and has a pure Nash equilibrium and a 'large' number of players is connected,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyse the typical structure of games in terms of the connectivity properties of their best-response graphs. Our central result shows that almost every game that is 'generic' (without indifferences) and has a pure Nash equilibrium and a 'large' number of players is connected, meaning that every action profile that is not a pure Nash equilibrium can reach every pure Nash equilibrium via best-response paths. This has important implications for dynamics in games. In particular, we show that there are simple, uncoupled, adaptive dynamics for which period-by-period play converges almost surely to a pure Nash equilibrium in almost every large generic game that has one (which contrasts with the known fact that there is no such dynamic that leads almost surely to a pure Nash equilibrium in every generic game that has one). We build on recent results in probabilistic combinatorics for our characterisation of game connectivity. |
---|---|
ISSN: | 2331-8422 |