AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters

This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-03, Vol.71 (3), p.2614-2625
Hauptverfasser: Hosseinzadehtaher, Mohsen, Zare, Alireza, Khan, Ahmad, Umar, Muhammad F., D'silva, Silvanus, Shadmand, Mohammad B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2625
container_issue 3
container_start_page 2614
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator Hosseinzadehtaher, Mohsen
Zare, Alireza
Khan, Ahmad
Umar, Muhammad F.
D'silva, Silvanus
Shadmand, Mohammad B.
description This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.
doi_str_mv 10.1109/TIE.2023.3265067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866490471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10100631</ieee_id><sourcerecordid>2866490471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk45f8RJxlJSqIQEQmWOXOdCXaV2sVOqbvzppJSB6T703jvdj5BrBiPGoLibz8oRBy5GgqsUVHZCBixNs6QoZH5KBsCzPAGQ6pxcxLgCYDJl6YB8j2fJvY5Y0zmapbOfW6Sdp6VbameQzoN20aLr6BvGjXcRqXb1YbBtvzZ76hv66ncYaNmi6YJ31tAHv7ZOd33oY7B1pF9W_3bJ1Let31n3QWfuC0OHIV6Ss0a3Ea_-6pC8T8v55Cl5fnmcTcbPiRFCdglTTBZGSaaEyousSQ0XUtay4bxBrQ1IztK6KLhpMgksZZrrWvAFZDngoncNye0xdxN8_2TsqpXfBtefrHiulCxAZqxXwVFlgo8xYFNtgl3rsK8YVAfOVc-5OnCu_jj3lpujxSLiPzkDUIKJH1kreSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866490471</pqid></control><display><type>article</type><title>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</title><source>IEEE Electronic Library (IEL)</source><creator>Hosseinzadehtaher, Mohsen ; Zare, Alireza ; Khan, Ahmad ; Umar, Muhammad F. ; D'silva, Silvanus ; Shadmand, Mohammad B.</creator><creatorcontrib>Hosseinzadehtaher, Mohsen ; Zare, Alireza ; Khan, Ahmad ; Umar, Muhammad F. ; D'silva, Silvanus ; Shadmand, Mohammad B.</creatorcontrib><description>This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3265067</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural network (ANN) ; Bayesian regularization algorithm (BRA) ; Case studies ; Circuit stability ; Disturbances ; Dynamic response ; Dynamic stability ; Frequency control ; Inverters ; Neural networks ; power electronic dominated grid (PEDG) ; Power system stability ; Regularization ; Resilience ; resiliency ; Restoration ; Thermal stability ; Transient analysis ; Transient response ; transient stability</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-03, Vol.71 (3), p.2614-2625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</citedby><cites>FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</cites><orcidid>0000-0003-1232-0581 ; 0000-0002-7965-7480 ; 0000-0002-7946-0215 ; 0000-0001-6059-3467 ; 0000-0002-3950-8640 ; 0000-0003-0868-7727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10100631$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Zare, Alireza</creatorcontrib><creatorcontrib>Khan, Ahmad</creatorcontrib><creatorcontrib>Umar, Muhammad F.</creatorcontrib><creatorcontrib>D'silva, Silvanus</creatorcontrib><creatorcontrib>Shadmand, Mohammad B.</creatorcontrib><title>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural network (ANN)</subject><subject>Bayesian regularization algorithm (BRA)</subject><subject>Case studies</subject><subject>Circuit stability</subject><subject>Disturbances</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Frequency control</subject><subject>Inverters</subject><subject>Neural networks</subject><subject>power electronic dominated grid (PEDG)</subject><subject>Power system stability</subject><subject>Regularization</subject><subject>Resilience</subject><subject>resiliency</subject><subject>Restoration</subject><subject>Thermal stability</subject><subject>Transient analysis</subject><subject>Transient response</subject><subject>transient stability</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk45f8RJxlJSqIQEQmWOXOdCXaV2sVOqbvzppJSB6T703jvdj5BrBiPGoLibz8oRBy5GgqsUVHZCBixNs6QoZH5KBsCzPAGQ6pxcxLgCYDJl6YB8j2fJvY5Y0zmapbOfW6Sdp6VbameQzoN20aLr6BvGjXcRqXb1YbBtvzZ76hv66ncYaNmi6YJ31tAHv7ZOd33oY7B1pF9W_3bJ1Let31n3QWfuC0OHIV6Ss0a3Ea_-6pC8T8v55Cl5fnmcTcbPiRFCdglTTBZGSaaEyousSQ0XUtay4bxBrQ1IztK6KLhpMgksZZrrWvAFZDngoncNye0xdxN8_2TsqpXfBtefrHiulCxAZqxXwVFlgo8xYFNtgl3rsK8YVAfOVc-5OnCu_jj3lpujxSLiPzkDUIKJH1kreSA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hosseinzadehtaher, Mohsen</creator><creator>Zare, Alireza</creator><creator>Khan, Ahmad</creator><creator>Umar, Muhammad F.</creator><creator>D'silva, Silvanus</creator><creator>Shadmand, Mohammad B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1232-0581</orcidid><orcidid>https://orcid.org/0000-0002-7965-7480</orcidid><orcidid>https://orcid.org/0000-0002-7946-0215</orcidid><orcidid>https://orcid.org/0000-0001-6059-3467</orcidid><orcidid>https://orcid.org/0000-0002-3950-8640</orcidid><orcidid>https://orcid.org/0000-0003-0868-7727</orcidid></search><sort><creationdate>20240301</creationdate><title>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</title><author>Hosseinzadehtaher, Mohsen ; Zare, Alireza ; Khan, Ahmad ; Umar, Muhammad F. ; D'silva, Silvanus ; Shadmand, Mohammad B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural network (ANN)</topic><topic>Bayesian regularization algorithm (BRA)</topic><topic>Case studies</topic><topic>Circuit stability</topic><topic>Disturbances</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Frequency control</topic><topic>Inverters</topic><topic>Neural networks</topic><topic>power electronic dominated grid (PEDG)</topic><topic>Power system stability</topic><topic>Regularization</topic><topic>Resilience</topic><topic>resiliency</topic><topic>Restoration</topic><topic>Thermal stability</topic><topic>Transient analysis</topic><topic>Transient response</topic><topic>transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Zare, Alireza</creatorcontrib><creatorcontrib>Khan, Ahmad</creatorcontrib><creatorcontrib>Umar, Muhammad F.</creatorcontrib><creatorcontrib>D'silva, Silvanus</creatorcontrib><creatorcontrib>Shadmand, Mohammad B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadehtaher, Mohsen</au><au>Zare, Alireza</au><au>Khan, Ahmad</au><au>Umar, Muhammad F.</au><au>D'silva, Silvanus</au><au>Shadmand, Mohammad B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>2614</spage><epage>2625</epage><pages>2614-2625</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3265067</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1232-0581</orcidid><orcidid>https://orcid.org/0000-0002-7965-7480</orcidid><orcidid>https://orcid.org/0000-0002-7946-0215</orcidid><orcidid>https://orcid.org/0000-0001-6059-3467</orcidid><orcidid>https://orcid.org/0000-0002-3950-8640</orcidid><orcidid>https://orcid.org/0000-0003-0868-7727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-03, Vol.71 (3), p.2614-2625
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2866490471
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Artificial neural network (ANN)
Bayesian regularization algorithm (BRA)
Case studies
Circuit stability
Disturbances
Dynamic response
Dynamic stability
Frequency control
Inverters
Neural networks
power electronic dominated grid (PEDG)
Power system stability
Regularization
Resilience
resiliency
Restoration
Thermal stability
Transient analysis
Transient response
transient stability
title AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Based%20Technique%20to%20Enhance%20Transient%20Response%20and%20Resiliency%20of%20Power%20Electronic%20Dominated%20Grids%20via%20Grid-Following%20Inverters&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Hosseinzadehtaher,%20Mohsen&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=2614&rft.epage=2625&rft.pages=2614-2625&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3265067&rft_dat=%3Cproquest_cross%3E2866490471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866490471&rft_id=info:pmid/&rft_ieee_id=10100631&rfr_iscdi=true