AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters
This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-03, Vol.71 (3), p.2614-2625 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2625 |
---|---|
container_issue | 3 |
container_start_page | 2614 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 71 |
creator | Hosseinzadehtaher, Mohsen Zare, Alireza Khan, Ahmad Umar, Muhammad F. D'silva, Silvanus Shadmand, Mohammad B. |
description | This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances. |
doi_str_mv | 10.1109/TIE.2023.3265067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866490471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10100631</ieee_id><sourcerecordid>2866490471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk45f8RJxlJSqIQEQmWOXOdCXaV2sVOqbvzppJSB6T703jvdj5BrBiPGoLibz8oRBy5GgqsUVHZCBixNs6QoZH5KBsCzPAGQ6pxcxLgCYDJl6YB8j2fJvY5Y0zmapbOfW6Sdp6VbameQzoN20aLr6BvGjXcRqXb1YbBtvzZ76hv66ncYaNmi6YJ31tAHv7ZOd33oY7B1pF9W_3bJ1Let31n3QWfuC0OHIV6Ss0a3Ea_-6pC8T8v55Cl5fnmcTcbPiRFCdglTTBZGSaaEyousSQ0XUtay4bxBrQ1IztK6KLhpMgksZZrrWvAFZDngoncNye0xdxN8_2TsqpXfBtefrHiulCxAZqxXwVFlgo8xYFNtgl3rsK8YVAfOVc-5OnCu_jj3lpujxSLiPzkDUIKJH1kreSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866490471</pqid></control><display><type>article</type><title>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</title><source>IEEE Electronic Library (IEL)</source><creator>Hosseinzadehtaher, Mohsen ; Zare, Alireza ; Khan, Ahmad ; Umar, Muhammad F. ; D'silva, Silvanus ; Shadmand, Mohammad B.</creator><creatorcontrib>Hosseinzadehtaher, Mohsen ; Zare, Alireza ; Khan, Ahmad ; Umar, Muhammad F. ; D'silva, Silvanus ; Shadmand, Mohammad B.</creatorcontrib><description>This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3265067</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural network (ANN) ; Bayesian regularization algorithm (BRA) ; Case studies ; Circuit stability ; Disturbances ; Dynamic response ; Dynamic stability ; Frequency control ; Inverters ; Neural networks ; power electronic dominated grid (PEDG) ; Power system stability ; Regularization ; Resilience ; resiliency ; Restoration ; Thermal stability ; Transient analysis ; Transient response ; transient stability</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-03, Vol.71 (3), p.2614-2625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</citedby><cites>FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</cites><orcidid>0000-0003-1232-0581 ; 0000-0002-7965-7480 ; 0000-0002-7946-0215 ; 0000-0001-6059-3467 ; 0000-0002-3950-8640 ; 0000-0003-0868-7727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10100631$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Zare, Alireza</creatorcontrib><creatorcontrib>Khan, Ahmad</creatorcontrib><creatorcontrib>Umar, Muhammad F.</creatorcontrib><creatorcontrib>D'silva, Silvanus</creatorcontrib><creatorcontrib>Shadmand, Mohammad B.</creatorcontrib><title>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural network (ANN)</subject><subject>Bayesian regularization algorithm (BRA)</subject><subject>Case studies</subject><subject>Circuit stability</subject><subject>Disturbances</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Frequency control</subject><subject>Inverters</subject><subject>Neural networks</subject><subject>power electronic dominated grid (PEDG)</subject><subject>Power system stability</subject><subject>Regularization</subject><subject>Resilience</subject><subject>resiliency</subject><subject>Restoration</subject><subject>Thermal stability</subject><subject>Transient analysis</subject><subject>Transient response</subject><subject>transient stability</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk45f8RJxlJSqIQEQmWOXOdCXaV2sVOqbvzppJSB6T703jvdj5BrBiPGoLibz8oRBy5GgqsUVHZCBixNs6QoZH5KBsCzPAGQ6pxcxLgCYDJl6YB8j2fJvY5Y0zmapbOfW6Sdp6VbameQzoN20aLr6BvGjXcRqXb1YbBtvzZ76hv66ncYaNmi6YJ31tAHv7ZOd33oY7B1pF9W_3bJ1Let31n3QWfuC0OHIV6Ss0a3Ea_-6pC8T8v55Cl5fnmcTcbPiRFCdglTTBZGSaaEyousSQ0XUtay4bxBrQ1IztK6KLhpMgksZZrrWvAFZDngoncNye0xdxN8_2TsqpXfBtefrHiulCxAZqxXwVFlgo8xYFNtgl3rsK8YVAfOVc-5OnCu_jj3lpujxSLiPzkDUIKJH1kreSA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hosseinzadehtaher, Mohsen</creator><creator>Zare, Alireza</creator><creator>Khan, Ahmad</creator><creator>Umar, Muhammad F.</creator><creator>D'silva, Silvanus</creator><creator>Shadmand, Mohammad B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1232-0581</orcidid><orcidid>https://orcid.org/0000-0002-7965-7480</orcidid><orcidid>https://orcid.org/0000-0002-7946-0215</orcidid><orcidid>https://orcid.org/0000-0001-6059-3467</orcidid><orcidid>https://orcid.org/0000-0002-3950-8640</orcidid><orcidid>https://orcid.org/0000-0003-0868-7727</orcidid></search><sort><creationdate>20240301</creationdate><title>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</title><author>Hosseinzadehtaher, Mohsen ; Zare, Alireza ; Khan, Ahmad ; Umar, Muhammad F. ; D'silva, Silvanus ; Shadmand, Mohammad B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-16149c641636897f5c2344d4f22feaac04215d992cf740151a2ad32b0780eb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural network (ANN)</topic><topic>Bayesian regularization algorithm (BRA)</topic><topic>Case studies</topic><topic>Circuit stability</topic><topic>Disturbances</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Frequency control</topic><topic>Inverters</topic><topic>Neural networks</topic><topic>power electronic dominated grid (PEDG)</topic><topic>Power system stability</topic><topic>Regularization</topic><topic>Resilience</topic><topic>resiliency</topic><topic>Restoration</topic><topic>Thermal stability</topic><topic>Transient analysis</topic><topic>Transient response</topic><topic>transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadehtaher, Mohsen</creatorcontrib><creatorcontrib>Zare, Alireza</creatorcontrib><creatorcontrib>Khan, Ahmad</creatorcontrib><creatorcontrib>Umar, Muhammad F.</creatorcontrib><creatorcontrib>D'silva, Silvanus</creatorcontrib><creatorcontrib>Shadmand, Mohammad B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadehtaher, Mohsen</au><au>Zare, Alireza</au><au>Khan, Ahmad</au><au>Umar, Muhammad F.</au><au>D'silva, Silvanus</au><au>Shadmand, Mohammad B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>2614</spage><epage>2625</epage><pages>2614-2625</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3265067</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1232-0581</orcidid><orcidid>https://orcid.org/0000-0002-7965-7480</orcidid><orcidid>https://orcid.org/0000-0002-7946-0215</orcidid><orcidid>https://orcid.org/0000-0001-6059-3467</orcidid><orcidid>https://orcid.org/0000-0002-3950-8640</orcidid><orcidid>https://orcid.org/0000-0003-0868-7727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2024-03, Vol.71 (3), p.2614-2625 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2866490471 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial intelligence Artificial neural network (ANN) Bayesian regularization algorithm (BRA) Case studies Circuit stability Disturbances Dynamic response Dynamic stability Frequency control Inverters Neural networks power electronic dominated grid (PEDG) Power system stability Regularization Resilience resiliency Restoration Thermal stability Transient analysis Transient response transient stability |
title | AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Based%20Technique%20to%20Enhance%20Transient%20Response%20and%20Resiliency%20of%20Power%20Electronic%20Dominated%20Grids%20via%20Grid-Following%20Inverters&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Hosseinzadehtaher,%20Mohsen&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=2614&rft.epage=2625&rft.pages=2614-2625&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3265067&rft_dat=%3Cproquest_cross%3E2866490471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866490471&rft_id=info:pmid/&rft_ieee_id=10100631&rfr_iscdi=true |