AI-Based Technique to Enhance Transient Response and Resiliency of Power Electronic Dominated Grids via Grid-Following Inverters
This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-03, Vol.71 (3), p.2614-2625 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a frequency restoration method to enhance power electronic dominated grid (PEDG) resiliency and transient response via redefining grid following inverters (GFLIs) role at the grid-edge. An artificial intelligence-based power reference correction (AI-PRC) module is developed for GFLIs to autonomously adjust their power setpoints during transient disturbances. A detailed analytical validation is provided that shows control rules in PEDG intrinsically follow the underlying dynamic of the swing-based machines to extend its stability boundary. Considering this fact, comprehensive transient and steady state-based mathematical models are used for constructing the learning database of the proposed AI-PRC. The proposed training approach can deal with grid's characteristics alterations and uncertainties. Thus, this approach incorporates PEDG's effective variables that shapes its dynamic response during transient disturbances. Subsequently, a neural network is trained by Bayesian regularization algorithm to realize the proposed AI-PRC scheme for frequency support via GFLIs. Several simulation and experimental case studies results validate the functionality of the proposed AI-PRC toward enhancing the PEDG's transient response and resiliency via GFLIs. The provided case studies demonstrate significant improvement in frequency restoration in response to transient disturbances. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2023.3265067 |