Highly Shape-Adaptable Honeycomb Gripper Using Orthotropic Surface Tension
Astrictive-type grippers, which generate gripping forces from adhesive forces at the contact surface, such as suction cup, are popular end-effectors as picking solutions because of their simplicity and small working space. However, the adhesive force of the astrictive gripper decreases with increasi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-03, Vol.71 (3), p.2662-2671 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Astrictive-type grippers, which generate gripping forces from adhesive forces at the contact surface, such as suction cup, are popular end-effectors as picking solutions because of their simplicity and small working space. However, the adhesive force of the astrictive gripper decreases with increasing complexity of the object surface; thus, its application has been restricted to simple picking of objects with a flat surface. Here, in this article, we present an all-round honeycomb astrictive gripper that has an orthotropic surface tension for grasping highly irregular shaped objects with an uneven surface. The design is inspired by mimicking the two-level (macro- and mesoscale) shape adaptation of the octopus's leg. The stiffness-variable structure is also consisted to change its stiffness similar to the function of octopus's leg, and owing to the combination of these structures makes possible to perform various tasks, including hammering, breakfast serving, and vaccination, which were not possible for previous astrictive gripper. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2023.3265032 |