Universal responses in nonmagnetic polar metals
We demonstrate that two phenomena, the kinetic magneto-electric effect and the non-linear Hall effect, are universal to polar metals, as a consequence of their coexisting and contraindicated polarization and metallicity. We show that measurement of the effects provides a complete characterization of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that two phenomena, the kinetic magneto-electric effect and the non-linear Hall effect, are universal to polar metals, as a consequence of their coexisting and contraindicated polarization and metallicity. We show that measurement of the effects provides a complete characterization of the nature of the polar metal, in that the non-zero response components indicate the direction of the polar axis, and the coefficients change sign on polarization reversal and become zero in the non-polar phase. We illustrate our findings for the case of electron-doped PbTiO\(_3\) using a combination of density functional theory and model Hamiltonian-based calculations. Our model Hamiltonian analysis provides crucial insight into the microscopic origin of the effects, showing that they originate from inversion-symmetry-breaking-induced inter-orbital hoppings, which cause an asymmetric charge density quantified by odd-parity charge multipoles. Our work both heightens the relevance of the kinetic magneto-electric and non-linear Hall effects, and broadens the platform for investigating and detecting odd-parity charge multipoles in metals. |
---|---|
ISSN: | 2331-8422 |