On a magnetic Lieb–Thirring-type estimate and the stability of bipolarons in graphene

Two-dimensional Weyl–Dirac relativistic fermions have attracted tremendous interest in condensed matter as they mimic relativistic high-energy physics. This paper concerns two-dimensional Weyl–Dirac operators in the presence of magnetic fields, in addition to a short-range scalar electric potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-09, Vol.64 (9)
Hauptverfasser: Alves, Magno B., Del Cima, Oswaldo M., Franco, Daniel H. T., Pereira, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional Weyl–Dirac relativistic fermions have attracted tremendous interest in condensed matter as they mimic relativistic high-energy physics. This paper concerns two-dimensional Weyl–Dirac operators in the presence of magnetic fields, in addition to a short-range scalar electric potential of the Bessel–Macdonald-type, restricted to its positive spectral subspace. This operator emerges from the action of a pristine graphene-like QED3 model recently proposed by De Lima, Del Cima, and Miranda, “On the electron–polaron–electron–polaron scattering and Landau levels in pristine graphene-like quantum electrodynamics,” Eur. Phys. J. B93, 187 (2020). A magnetic Lieb–Thirring-type inequality à la Shen is derived for the sum of the negative eigenvalues of the magnetic Weyl–Dirac operators restricted to their positive spectral subspace. An application to the stability of bipolarons in graphene in the presence of magnetic fields is given.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0147461