Non-Differentiability of the Convolution of Differentiable Real Functions

We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2020, Vol.45 (2), p.327
Hauptverfasser: Ciesielski, Krzysztof C., Jiménez-Rodríguez, Pablo, Muñoz-Fernández, Gustavo A., Seoane-Sepúlveda, Juan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 327
container_title Real analysis exchange
container_volume 45
creator Ciesielski, Krzysztof C.
Jiménez-Rodríguez, Pablo
Muñoz-Fernández, Gustavo A.
Seoane-Sepúlveda, Juan B.
description We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.
doi_str_mv 10.14321/realanalexch.45.2.0327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866106080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866106080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-ac1e8b2195e511cb1b43169e45e2175b31069d5e88c68061d35af217528e0a9f3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKe_wYLXrTn5anop0-lgKIhehzQ7YR21mUkr7t_bqhe7OvC-z_l6CbkGWoDgDG4j2tZ2tsVvty2ELFhBOStPyAwqTnNgUJ2SGQVR5qNQnpOLlHaUclFSOSOr59Dl9433GLHrG1s3bdMfsuCzfovZInRfoR36JnSTdMy1mL2Oi7Pl0LnJT5fkzNs24dV_nZP35cPb4ilfvzyuFnfr3IFQfW4doK7HoyRKAFdDLTioCoVEBqWsOVBVbSRq7ZSmCjZcWj85TCO1ledzcvM3dx_D54CpN7swxPH_ZJhWamynmo5U-Ue5GFKK6M0-Nh82HgxQ85ubOc7NCGmYmXLjP6UpZEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866106080</pqid></control><display><type>article</type><title>Non-Differentiability of the Convolution of Differentiable Real Functions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ciesielski, Krzysztof C. ; Jiménez-Rodríguez, Pablo ; Muñoz-Fernández, Gustavo A. ; Seoane-Sepúlveda, Juan B.</creator><creatorcontrib>Ciesielski, Krzysztof C. ; Jiménez-Rodríguez, Pablo ; Muñoz-Fernández, Gustavo A. ; Seoane-Sepúlveda, Juan B.</creatorcontrib><description>We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.</description><identifier>ISSN: 0147-1937</identifier><identifier>EISSN: 1930-1219</identifier><identifier>DOI: 10.14321/realanalexch.45.2.0327</identifier><language>eng</language><publisher>East Lansing: Michigan State University Press</publisher><subject>Convolution ; Convolutional codes ; Mathematical functions ; Mathematics ; Smoothness ; Theorems</subject><ispartof>Real analysis exchange, 2020, Vol.45 (2), p.327</ispartof><rights>Copyright Michigan State University Press 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27901,27902,27903</link.rule.ids></links><search><creatorcontrib>Ciesielski, Krzysztof C.</creatorcontrib><creatorcontrib>Jiménez-Rodríguez, Pablo</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><title>Non-Differentiability of the Convolution of Differentiable Real Functions</title><title>Real analysis exchange</title><description>We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.</description><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Smoothness</subject><subject>Theorems</subject><issn>0147-1937</issn><issn>1930-1219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKe_wYLXrTn5anop0-lgKIhehzQ7YR21mUkr7t_bqhe7OvC-z_l6CbkGWoDgDG4j2tZ2tsVvty2ELFhBOStPyAwqTnNgUJ2SGQVR5qNQnpOLlHaUclFSOSOr59Dl9433GLHrG1s3bdMfsuCzfovZInRfoR36JnSTdMy1mL2Oi7Pl0LnJT5fkzNs24dV_nZP35cPb4ilfvzyuFnfr3IFQfW4doK7HoyRKAFdDLTioCoVEBqWsOVBVbSRq7ZSmCjZcWj85TCO1ledzcvM3dx_D54CpN7swxPH_ZJhWamynmo5U-Ue5GFKK6M0-Nh82HgxQ85ubOc7NCGmYmXLjP6UpZEY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ciesielski, Krzysztof C.</creator><creator>Jiménez-Rodríguez, Pablo</creator><creator>Muñoz-Fernández, Gustavo A.</creator><creator>Seoane-Sepúlveda, Juan B.</creator><general>Michigan State University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>JQ2</scope></search><sort><creationdate>2020</creationdate><title>Non-Differentiability of the Convolution of Differentiable Real Functions</title><author>Ciesielski, Krzysztof C. ; Jiménez-Rodríguez, Pablo ; Muñoz-Fernández, Gustavo A. ; Seoane-Sepúlveda, Juan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-ac1e8b2195e511cb1b43169e45e2175b31069d5e88c68061d35af217528e0a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Smoothness</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciesielski, Krzysztof C.</creatorcontrib><creatorcontrib>Jiménez-Rodríguez, Pablo</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Real analysis exchange</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciesielski, Krzysztof C.</au><au>Jiménez-Rodríguez, Pablo</au><au>Muñoz-Fernández, Gustavo A.</au><au>Seoane-Sepúlveda, Juan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Differentiability of the Convolution of Differentiable Real Functions</atitle><jtitle>Real analysis exchange</jtitle><date>2020</date><risdate>2020</risdate><volume>45</volume><issue>2</issue><spage>327</spage><pages>327-</pages><issn>0147-1937</issn><eissn>1930-1219</eissn><abstract>We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.</abstract><cop>East Lansing</cop><pub>Michigan State University Press</pub><doi>10.14321/realanalexch.45.2.0327</doi></addata></record>
fulltext fulltext
identifier ISSN: 0147-1937
ispartof Real analysis exchange, 2020, Vol.45 (2), p.327
issn 0147-1937
1930-1219
language eng
recordid cdi_proquest_journals_2866106080
source EZB-FREE-00999 freely available EZB journals
subjects Convolution
Convolutional codes
Mathematical functions
Mathematics
Smoothness
Theorems
title Non-Differentiability of the Convolution of Differentiable Real Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Differentiability%20of%20the%20Convolution%20of%20Differentiable%20Real%20Functions&rft.jtitle=Real%20analysis%20exchange&rft.au=Ciesielski,%20Krzysztof%20C.&rft.date=2020&rft.volume=45&rft.issue=2&rft.spage=327&rft.pages=327-&rft.issn=0147-1937&rft.eissn=1930-1219&rft_id=info:doi/10.14321/realanalexch.45.2.0327&rft_dat=%3Cproquest_cross%3E2866106080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866106080&rft_id=info:pmid/&rfr_iscdi=true