Non-Differentiability of the Convolution of Differentiable Real Functions
We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these ma...
Gespeichert in:
Veröffentlicht in: | Real analysis exchange 2020, Vol.45 (2), p.327 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 327 |
container_title | Real analysis exchange |
container_volume | 45 |
creator | Ciesielski, Krzysztof C. Jiménez-Rodríguez, Pablo Muñoz-Fernández, Gustavo A. Seoane-Sepúlveda, Juan B. |
description | We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed. |
doi_str_mv | 10.14321/realanalexch.45.2.0327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866106080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866106080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-ac1e8b2195e511cb1b43169e45e2175b31069d5e88c68061d35af217528e0a9f3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKe_wYLXrTn5anop0-lgKIhehzQ7YR21mUkr7t_bqhe7OvC-z_l6CbkGWoDgDG4j2tZ2tsVvty2ELFhBOStPyAwqTnNgUJ2SGQVR5qNQnpOLlHaUclFSOSOr59Dl9433GLHrG1s3bdMfsuCzfovZInRfoR36JnSTdMy1mL2Oi7Pl0LnJT5fkzNs24dV_nZP35cPb4ilfvzyuFnfr3IFQfW4doK7HoyRKAFdDLTioCoVEBqWsOVBVbSRq7ZSmCjZcWj85TCO1ledzcvM3dx_D54CpN7swxPH_ZJhWamynmo5U-Ue5GFKK6M0-Nh82HgxQ85ubOc7NCGmYmXLjP6UpZEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866106080</pqid></control><display><type>article</type><title>Non-Differentiability of the Convolution of Differentiable Real Functions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ciesielski, Krzysztof C. ; Jiménez-Rodríguez, Pablo ; Muñoz-Fernández, Gustavo A. ; Seoane-Sepúlveda, Juan B.</creator><creatorcontrib>Ciesielski, Krzysztof C. ; Jiménez-Rodríguez, Pablo ; Muñoz-Fernández, Gustavo A. ; Seoane-Sepúlveda, Juan B.</creatorcontrib><description>We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.</description><identifier>ISSN: 0147-1937</identifier><identifier>EISSN: 1930-1219</identifier><identifier>DOI: 10.14321/realanalexch.45.2.0327</identifier><language>eng</language><publisher>East Lansing: Michigan State University Press</publisher><subject>Convolution ; Convolutional codes ; Mathematical functions ; Mathematics ; Smoothness ; Theorems</subject><ispartof>Real analysis exchange, 2020, Vol.45 (2), p.327</ispartof><rights>Copyright Michigan State University Press 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27901,27902,27903</link.rule.ids></links><search><creatorcontrib>Ciesielski, Krzysztof C.</creatorcontrib><creatorcontrib>Jiménez-Rodríguez, Pablo</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><title>Non-Differentiability of the Convolution of Differentiable Real Functions</title><title>Real analysis exchange</title><description>We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.</description><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Smoothness</subject><subject>Theorems</subject><issn>0147-1937</issn><issn>1930-1219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKe_wYLXrTn5anop0-lgKIhehzQ7YR21mUkr7t_bqhe7OvC-z_l6CbkGWoDgDG4j2tZ2tsVvty2ELFhBOStPyAwqTnNgUJ2SGQVR5qNQnpOLlHaUclFSOSOr59Dl9433GLHrG1s3bdMfsuCzfovZInRfoR36JnSTdMy1mL2Oi7Pl0LnJT5fkzNs24dV_nZP35cPb4ilfvzyuFnfr3IFQfW4doK7HoyRKAFdDLTioCoVEBqWsOVBVbSRq7ZSmCjZcWj85TCO1ledzcvM3dx_D54CpN7swxPH_ZJhWamynmo5U-Ue5GFKK6M0-Nh82HgxQ85ubOc7NCGmYmXLjP6UpZEY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ciesielski, Krzysztof C.</creator><creator>Jiménez-Rodríguez, Pablo</creator><creator>Muñoz-Fernández, Gustavo A.</creator><creator>Seoane-Sepúlveda, Juan B.</creator><general>Michigan State University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>JQ2</scope></search><sort><creationdate>2020</creationdate><title>Non-Differentiability of the Convolution of Differentiable Real Functions</title><author>Ciesielski, Krzysztof C. ; Jiménez-Rodríguez, Pablo ; Muñoz-Fernández, Gustavo A. ; Seoane-Sepúlveda, Juan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-ac1e8b2195e511cb1b43169e45e2175b31069d5e88c68061d35af217528e0a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Smoothness</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciesielski, Krzysztof C.</creatorcontrib><creatorcontrib>Jiménez-Rodríguez, Pablo</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><collection>CrossRef</collection><collection>Docstoc</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Real analysis exchange</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciesielski, Krzysztof C.</au><au>Jiménez-Rodríguez, Pablo</au><au>Muñoz-Fernández, Gustavo A.</au><au>Seoane-Sepúlveda, Juan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Differentiability of the Convolution of Differentiable Real Functions</atitle><jtitle>Real analysis exchange</jtitle><date>2020</date><risdate>2020</risdate><volume>45</volume><issue>2</issue><spage>327</spage><pages>327-</pages><issn>0147-1937</issn><eissn>1930-1219</eissn><abstract>We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.</abstract><cop>East Lansing</cop><pub>Michigan State University Press</pub><doi>10.14321/realanalexch.45.2.0327</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0147-1937 |
ispartof | Real analysis exchange, 2020, Vol.45 (2), p.327 |
issn | 0147-1937 1930-1219 |
language | eng |
recordid | cdi_proquest_journals_2866106080 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Convolution Convolutional codes Mathematical functions Mathematics Smoothness Theorems |
title | Non-Differentiability of the Convolution of Differentiable Real Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Differentiability%20of%20the%20Convolution%20of%20Differentiable%20Real%20Functions&rft.jtitle=Real%20analysis%20exchange&rft.au=Ciesielski,%20Krzysztof%20C.&rft.date=2020&rft.volume=45&rft.issue=2&rft.spage=327&rft.pages=327-&rft.issn=0147-1937&rft.eissn=1930-1219&rft_id=info:doi/10.14321/realanalexch.45.2.0327&rft_dat=%3Cproquest_cross%3E2866106080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866106080&rft_id=info:pmid/&rfr_iscdi=true |