Non-Differentiability of the Convolution of Differentiable Real Functions

We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2020, Vol.45 (2), p.327
Hauptverfasser: Ciesielski, Krzysztof C., Jiménez-Rodríguez, Pablo, Muñoz-Fernández, Gustavo A., Seoane-Sepúlveda, Juan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an example of two 2 -periodic everywhere differentiable functions f , g : R → R whose convolution f ∗ g fails to be differentiable at every point of some perfect (thus, uncountable) set P ⊂ R . This shows that the convolution operator can actually destroy the differentiability of these maps, rather than introducing additional smoothness (as it is usually the case). New directions and open problems are also posed.
ISSN:0147-1937
1930-1219
DOI:10.14321/realanalexch.45.2.0327