Turán inequalities for the broken k-diamond partition functions
We obtain an asymptotic formula for Andrews and Paule’s broken k -diamond partition function Δ k ( n ) , where k = 1 or 2. Based on this asymptotic formula, we derive that Δ k ( n ) satisfies the order d Turán inequalities for d ≥ 1 and for sufficiently large n when k = 1 or 2 by using a general res...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2023-10, Vol.62 (2), p.593-615 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain an asymptotic formula for Andrews and Paule’s broken
k
-diamond partition function
Δ
k
(
n
)
, where
k
=
1
or 2. Based on this asymptotic formula, we derive that
Δ
k
(
n
)
satisfies the order
d
Turán inequalities for
d
≥
1
and for sufficiently large
n
when
k
=
1
or 2 by using a general result of Griffin, Ono, Rolen, and Zagier. We also show that Andrews and Paule’s broken
k
-diamond partition function
Δ
k
(
n
)
is log-concave for
n
≥
1
when
k
=
1
or 2, which implies that
Δ
k
(
a
)
Δ
k
(
b
)
≥
Δ
k
(
a
+
b
)
for
a
,
b
≥
1
when
k
=
1
or 2. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-022-00687-w |