Upper Bound of Null Space Constant [Formula Omitted] and High-Order Restricted Isometry Constant [Formula Omitted] for Sparse Recovery via [Formula Omitted] Minimization
The [Formula Omitted] null space property ([Formula Omitted]-NSP) and restricted isometry property (RIP) are two important frames for sparse signal recovery. New sufficient conditions in terms of [Formula Omitted]-NSP and RIP are respectively developed in this paper. Firstly, we characterize the [Fo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2023-01, Vol.71, p.2927 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The [Formula Omitted] null space property ([Formula Omitted]-NSP) and restricted isometry property (RIP) are two important frames for sparse signal recovery. New sufficient conditions in terms of [Formula Omitted]-NSP and RIP are respectively developed in this paper. Firstly, we characterize the [Formula Omitted] robust null space property ([Formula Omitted]-RNSP) concerning two high-order restricted isometry constants. Then we derive an upper bound of [Formula Omitted]-NSC [Formula Omitted] for the exact recovery of [Formula Omitted]-sparse signals via [Formula Omitted] minimization. Secondly, we establish an upper bound of RIC [Formula Omitted] based on an adjustable parameter [Formula Omitted] and the sparsity level [Formula Omitted] via constrained [Formula Omitted] minimization. The induced high-order RIP condition dependent on the sparsity level [Formula Omitted] is substantially milder compared with the state-of-the-art results. Thirdly, we present new results for the stable recovery of approximately [Formula Omitted]-sparse signals in [Formula Omitted] bounded noise setting. Moreover, numerical experiments demonstrate the advantage of the obtained results for sparse recovery. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2023.3296197 |