Creation of Adaptive Algorithms for Determining the Brillouin Frequency Shift and Tension of Optical Fiber

Early detection of potentially unreliable areas in optical fibers makes it possible to detect degradation of optical fibers of fiber-optic communication lines at an early stage. Early diagnostics of the physical state of optical fibers located in the laid optical cables of telecommunication systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Instruments and experimental techniques (New York) 2023-10, Vol.66 (5), p.769-774
1. Verfasser: Bogachkov, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early detection of potentially unreliable areas in optical fibers makes it possible to detect degradation of optical fibers of fiber-optic communication lines at an early stage. Early diagnostics of the physical state of optical fibers located in the laid optical cables of telecommunication systems is an important topical task. The paper presents adaptive algorithms that allow one to determine the maximum of the Mandelstam–Brillouin scattering spectrum (Brillouin frequency shift), and then the degree of tension of optical fibers. The process of determining the Brillouin frequency shift, whose values at wavelengths of laser radiation used in telecommunication systems belong to the microwave range, can be significantly accelerated if adaptive algorithms for obtaining and processing data are implemented due to a special choice of the step for the scanning frequency and the time of accumulation of measurement results. The adaptive algorithms considered in this paper make it possible to speed up the process of obtaining output results in Brillouin reflectometers by ignoring readings that do not significantly affect the final characteristics. The construction of approximate graphs of the distribution of the spectrum and tension along the length of the fiber allows the trained user of the Brillouin reflectometer to stop the analysis process in order to make corrections to the measuring process (selection of the scanning range in frequency, change in the scanning step in frequency, choice of the accuracy of the presentation of output results, change in spatial resolution, etc.), which also speeds up the testing of the selected fiber. The measurement process can also be accelerated by adaptively changing the number of averages. With a database of measured Mandelstam–Brillouin scattering characteristics of optical fibers of various types and manufacturers, the speed of obtaining tension plots can also be increased. Since the approximate value of the Brillouin frequency shift is calculated already at the initial steps of the measurement process, preliminary dependences of the tension distribution along the length of the fiber will be constructed rather quickly.
ISSN:0020-4412
1608-3180
DOI:10.1134/S0020441223050056