Reliable and Efficient Chip-PCB Hybrid PUF and Lightweight Key Generator
Physical Unclonable Function (PUF) is a promising lightweight hardware security primitive that can extract device fingerprints for encryption or authentication. However, extracting fingerprints from either the chip or the board individually has security flaws and cannot provide hardware system-level...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2023/08/01, Vol.E106.C(8), pp.432-441 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physical Unclonable Function (PUF) is a promising lightweight hardware security primitive that can extract device fingerprints for encryption or authentication. However, extracting fingerprints from either the chip or the board individually has security flaws and cannot provide hardware system-level security. This paper proposes a new Chip-PCB hybrid PUF(CPR PUF) in which Weak PUF on PCB is combined with Strong PUF inside the chip to generate massive responses under the control of challenges of on-chip Strong PUF. This structure tightly couples the chip and PCB into an inseparable and unclonable unit thus can verify the authenticity of chip as well as the board. To improve the uniformity and reliability of Chip-PCB hybrid PUF, we propose a lightweight key generator based on a reliability self-test and debiasing algorithm to extract massive stable and secure keys from unreliable and biased PUF responses, which eliminates expensive error correction processes. The FPGA-based test results show that the PUF responses after robust extraction and debiasing achieve high uniqueness, reliability, uniformity and anti-counterfeiting features. Moreover, the key generator greatly reduces the execution cost and the bit error rate of the keys is less than 10-9, the overall security of the key is also improved by eliminating the entropy leakage of helper data. |
---|---|
ISSN: | 0916-8524 1745-1353 |
DOI: | 10.1587/transele.2022ECP5050 |