Distilling Distribution Knowledge in Normalizing Flow
In this letter, we propose a feature-based knowledge distillation scheme which transfers knowledge between intermediate blocks of teacher and student with flow-based architecture, specifically Normalizing flow in our implementation. In addition to the knowledge transfer scheme, we examine how config...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2023/08/01, Vol.E106.D(8), pp.1287-1291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a feature-based knowledge distillation scheme which transfers knowledge between intermediate blocks of teacher and student with flow-based architecture, specifically Normalizing flow in our implementation. In addition to the knowledge transfer scheme, we examine how configuration of the distillation positions impacts on the knowledge transfer performance. To evaluate the proposed ideas, we choose two knowledge distillation baseline models which are based on Normalizing flow on different domains: CS-Flow for anomaly detection and SRFlow-DA for super-resolution. A set of performance comparison to the baseline models with popular benchmark datasets shows promising results along with improved inference speed. The comparison includes performance analysis based on various configurations of the distillation positions in the proposed scheme. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2022EDL8103 |