Nonlinear network identifiability: The static case
We analyze the problem of network identifiability with nonlinear functions associated with the edges. We consider a static model for the output of each node and by assuming a perfect identification of the function associated with the measurement of a node, we provide conditions for the identifiabili...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the problem of network identifiability with nonlinear functions associated with the edges. We consider a static model for the output of each node and by assuming a perfect identification of the function associated with the measurement of a node, we provide conditions for the identifiability of the edges in a specific class of functions. First, we analyze the identifiability conditions in the class of all nonlinear functions and show that even for a path graph, it is necessary to measure all the nodes except by the source. Then, we consider analytic functions satisfying \(f(0)=0\) and we provide conditions for the identifiability of paths and trees. Finally, by restricting the problem to a smaller class of functions where none of the functions is linear, we derive conditions for the identifiability of directed acyclic graphs. Some examples are presented to illustrate the results. |
---|---|
ISSN: | 2331-8422 |