Pilot bunch and co-magnetometry of polarized particles stored in a ring
In polarization experiments at storage rings, one of the challenges is to maintain the spin-resonance condition of a radio-frequency spin rotator with the spin-precessions of the orbiting particles. Time-dependent variations of the magnetic fields of ring elements lead to unwanted variations of the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In polarization experiments at storage rings, one of the challenges is to maintain the spin-resonance condition of a radio-frequency spin rotator with the spin-precessions of the orbiting particles. Time-dependent variations of the magnetic fields of ring elements lead to unwanted variations of the spin precession frequency. We report here on a solution to this problem by shielding (or masking) one of the bunches stored in the ring from the high-frequency fields of the spin rotator, so that the masked pilot bunch acts as a co-magnetometer for the other signal bunch, tracking fluctuations in the ring on a time scale of about one second. While the new method was developed primarily for searches of electric dipole moments of charged particles, it may have far-reaching implications for future spin physics facilities, such as the EIC and NICA. |
---|---|
ISSN: | 2331-8422 |