Metrizability of Holonomy Invariant Projective Deformation of Sprays
In this paper, we consider projective deformation of the geodesic system of Finsler spaces by holonomy invariant functions. Starting with a Finsler spray $S$ and a holonomy invariant function ${\mathcal{P}}$ , we investigate the metrizability property of the projective deformation $\widetilde{S}=S-...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2023-09, Vol.66 (3), p.701-714 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider projective deformation of the geodesic system of Finsler spaces by holonomy invariant functions. Starting with a Finsler spray
$S$
and a holonomy invariant function
${\mathcal{P}}$
, we investigate the metrizability property of the projective deformation
$\widetilde{S}=S-2\unicode[STIX]{x1D706}{\mathcal{P}}{\mathcal{C}}$
. We prove that for any holonomy invariant nontrivial function
${\mathcal{P}}$
and for almost every value
$\unicode[STIX]{x1D706}\in \mathbb{R}$
, such deformation is not Finsler metrizable. We identify the cases where such deformation can lead to a metrizable spray. In these cases, the holonomy invariant function
${\mathcal{P}}$
is necessarily one of the principal curvatures of the geodesic structure. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439520000016 |