Metrizability of Holonomy Invariant Projective Deformation of Sprays

In this paper, we consider projective deformation of the geodesic system of Finsler spaces by holonomy invariant functions. Starting with a Finsler spray $S$ and a holonomy invariant function  ${\mathcal{P}}$ , we investigate the metrizability property of the projective deformation $\widetilde{S}=S-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2023-09, Vol.66 (3), p.701-714
Hauptverfasser: Elgendi, S. G., Muzsnay, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider projective deformation of the geodesic system of Finsler spaces by holonomy invariant functions. Starting with a Finsler spray $S$ and a holonomy invariant function  ${\mathcal{P}}$ , we investigate the metrizability property of the projective deformation $\widetilde{S}=S-2\unicode[STIX]{x1D706}{\mathcal{P}}{\mathcal{C}}$ . We prove that for any holonomy invariant nontrivial function ${\mathcal{P}}$ and for almost every value $\unicode[STIX]{x1D706}\in \mathbb{R}$ , such deformation is not Finsler metrizable. We identify the cases where such deformation can lead to a metrizable spray. In these cases, the holonomy invariant function ${\mathcal{P}}$ is necessarily one of the principal curvatures of the geodesic structure.
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439520000016