Mahler measure of polynomial iterates
Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial $f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$ we show that the Mahler measure of the iterates $f^n$ grows geometrically fast with the degree $d^n,$ and find the exact base of that...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2023-09, Vol.66 (3), p.881-885 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial
$f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$
we show that the Mahler measure of the iterates
$f^n$
grows geometrically fast with the degree
$d^n,$
and find the exact base of that exponential growth. This base is expressed via an integral of
$\log ^+|z|$
with respect to the invariant measure of the Julia set for the polynomial
$f.$
Moreover, we give sharp estimates for such an integral when the Julia set is connected. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439523000048 |