Invariant means on weakly almost periodic functionals with application to quantum groups
Let ${\mathcal A}$ be a Banach algebra, and let $\varphi $ be a nonzero character on ${\mathcal A}$ . For a closed ideal I of ${\mathcal A}$ with $I\not \subseteq \ker \varphi $ such that I has a bounded approximate identity, we show that $\operatorname {WAP}(\mathcal {A})$ , the space of weakly alm...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2023-09, Vol.66 (3), p.927-936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
${\mathcal A}$
be a Banach algebra, and let
$\varphi $
be a nonzero character on
${\mathcal A}$
. For a closed ideal I of
${\mathcal A}$
with
$I\not \subseteq \ker \varphi $
such that I has a bounded approximate identity, we show that
$\operatorname {WAP}(\mathcal {A})$
, the space of weakly almost periodic functionals on
${\mathcal A}$
, admits a right (left) invariant
$\varphi $
-mean if and only if
$\operatorname {WAP}(I)$
admits a right (left) invariant
$\varphi |_I$
-mean. This generalizes a result due to Neufang for the group algebra
$L^1(G)$
as an ideal in the measure algebra
$M(G)$
, for a locally compact group G. Then we apply this result to the quantum group algebra
$L^1({\mathbb G})$
of a locally compact quantum group
${\mathbb G}$
. Finally, we study the existence of left and right invariant
$1$
-means on
$ \operatorname {WAP}(\mathcal {T}_{\triangleright }({\mathbb G}))$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439523000061 |