Conjugacy Class Growth in Virtually Abelian Groups

We study the conjugacy class growth function in finitely generated virtually abelian groups. That is, the number of elements in the ball of radius \(n\) in the Cayley graph which intersect a fixed conjugacy class. In the class of virtually abelian groups, we prove that this function is always asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Dermenjian, Aram, Evetts, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the conjugacy class growth function in finitely generated virtually abelian groups. That is, the number of elements in the ball of radius \(n\) in the Cayley graph which intersect a fixed conjugacy class. In the class of virtually abelian groups, we prove that this function is always asymptotically equivalent to a polynomial. Furthermore, we show that in any affine Coxeter group, the degree of polynomial growth of a conjugacy class is equivalent to the reflection length of any element of that class.
ISSN:2331-8422