Conjugacy Class Growth in Virtually Abelian Groups
We study the conjugacy class growth function in finitely generated virtually abelian groups. That is, the number of elements in the ball of radius \(n\) in the Cayley graph which intersect a fixed conjugacy class. In the class of virtually abelian groups, we prove that this function is always asympt...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the conjugacy class growth function in finitely generated virtually abelian groups. That is, the number of elements in the ball of radius \(n\) in the Cayley graph which intersect a fixed conjugacy class. In the class of virtually abelian groups, we prove that this function is always asymptotically equivalent to a polynomial. Furthermore, we show that in any affine Coxeter group, the degree of polynomial growth of a conjugacy class is equivalent to the reflection length of any element of that class. |
---|---|
ISSN: | 2331-8422 |