New upper bounds on the size of permutation codes under Kendall τ-metric

We give two methods that are based on the representation theory of symmetric groups to study the largest size P ( n ,  d ) of permutation codes of length n , i.e., subsets of the set S n of all permutations on { 1 , ⋯ , n } with the minimum distance (at least) d under the Kendall τ -metric. The firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2023-09, Vol.15 (5), p.891-903
Hauptverfasser: Abdollahi, Alireza, Bagherian, Javad, Jafari, Fatemeh, Khatami, Maryam, Parvaresh, Farzad, Sobhani, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give two methods that are based on the representation theory of symmetric groups to study the largest size P ( n ,  d ) of permutation codes of length n , i.e., subsets of the set S n of all permutations on { 1 , ⋯ , n } with the minimum distance (at least) d under the Kendall τ -metric. The first method is an integer programming problem obtained from the transitive actions of S n . The second method can be applied to refute the existence of perfect codes in S n . Applying these methods, we reduce the known upper bound ( n - 1 ) ! - 1 for P ( n , 3) to ( n - 1 ) ! - ⌈ n 3 ⌉ + 2 ≤ ( n - 1 ) ! - 2 , whenever n ≥ 11 is prime. If n = 6 , 7, 11, 13, 14, 15, 17, the known upper bound for P ( n , 3) is decreased by 3, 3, 9, 11, 1, 1, 4, respectively.
ISSN:1936-2447
1936-2455
DOI:10.1007/s12095-023-00642-6